166 research outputs found

    Diagnosability of Fuzzy Discrete Event Systems

    Full text link
    In order to more effectively cope with the real-world problems of vagueness, {\it fuzzy discrete event systems} (FDESs) were proposed recently, and the supervisory control theory of FDESs was developed. In view of the importance of failure diagnosis, in this paper, we present an approach of the failure diagnosis in the framework of FDESs. More specifically: (1) We formalize the definition of diagnosability for FDESs, in which the observable set and failure set of events are {\it fuzzy}, that is, each event has certain degree to be observable and unobservable, and, also, each event may possess different possibility of failure occurring. (2) Through the construction of observability-based diagnosers of FDESs, we investigate its some basic properties. In particular, we present a necessary and sufficient condition for diagnosability of FDESs. (3) Some examples serving to illuminate the applications of the diagnosability of FDESs are described. To conclude, some related issues are raised for further consideration.Comment: 14 pages; revisions have been mad

    A general theorem for degree-reduction of a digital BR function

    Get PDF
    A general theorem is developed for the degree reduction of a bounded real (BR) digital filter transfer function, and is related to the extraction of a digital lossless two-pair from a BR function in such a manner that the remainder function is reduced order BR. The theorem finds applications in the synthesis of digital filter transfer functions in the form of a cascade of lossless two pairs

    Extra Connectivity of Strong Product of Graphs

    Full text link
    The gg-extraextra connectivityconnectivity ΞΊg(G)\kappa_{g}(G) of a connected graph GG is the minimum cardinality of a set of vertices, if it exists, whose deletion makes GG disconnected and leaves each remaining component with more than gg vertices, where gg is a non-negative integer. The strongstrong productproduct G1⊠G2G_1 \boxtimes G_2 of graphs G1G_1 and G2G_2 is the graph with vertex set V(G1⊠G2)=V(G1)Γ—V(G2)V(G_1 \boxtimes G_2)=V(G_1)\times V(G_2), where two distinct vertices (x1,y1),(x2,y2)∈V(G1)Γ—V(G2)(x_{1}, y_{1}),(x_{2}, y_{2}) \in V(G_1)\times V(G_2) are adjacent in G1⊠G2G_1 \boxtimes G_2 if and only if x1=x2x_{1}=x_{2} and y1y2∈E(G2)y_{1} y_{2} \in E(G_2) or y1=y2y_{1}=y_{2} and x1x2∈E(G1)x_{1} x_{2} \in E(G_1) or x1x2∈E(G1)x_{1} x_{2} \in E(G_1) and y1y2∈E(G2)y_{1} y_{2} \in E(G_2). In this paper, we give the gΒ (≀3)g\ (\leq 3)-extraextra connectivityconnectivity of G1⊠G2G_1\boxtimes G_2, where GiG_i is a maximally connected kiΒ (β‰₯2)k_i\ (\geq 2)-regular graph for i=1,2i=1,2. As a byproduct, we get gΒ (≀3)g\ (\leq 3)-extraextra conditional fault-diagnosability of G1⊠G2G_1\boxtimes G_2 under PMCPMC model

    A Local Diagnosis Algorithm for Hypercube-like Networks under the BGM Diagnosis Model

    Full text link
    System diagnosis is process of identifying faulty nodes in a system. An efficient diagnosis is crucial for a multiprocessor system. The BGM diagnosis model is a modification of the PMC diagnosis model, which is a test-based diagnosis. In this paper, we present a specific structure and propose an algorithm for diagnosing a node in a system under the BGM model. We also give a polynomial-time algorithm that a node in a hypercube-like network can be diagnosed correctly in three test rounds under the BGM diagnosis model
    • …
    corecore