9 research outputs found

    On the stretch factor of the Theta-4 graph

    Get PDF
    In this paper we show that the \theta-graph with 4 cones has constant stretch factor, i.e., there is a path between any pair of vertices in this graph whose length is at most a constant times the Euclidean distance between that pair of vertices. This is the last \theta-graph for which it was not known whether its stretch factor was bounded

    Theta-3 is connected

    Full text link
    In this paper, we show that the θ\theta-graph with three cones is connected. We also provide an alternative proof of the connectivity of the Yao graph with three cones.Comment: 11 pages, to appear in CGT

    The Price of Order

    Full text link
    We present tight bounds on the spanning ratio of a large family of ordered θ\theta-graphs. A θ\theta-graph partitions the plane around each vertex into mm disjoint cones, each having aperture θ=2π/m\theta = 2 \pi/m. An ordered θ\theta-graph is constructed by inserting the vertices one by one and connecting each vertex to the closest previously-inserted vertex in each cone. We show that for any integer k1k \geq 1, ordered θ\theta-graphs with 4k+44k + 4 cones have a tight spanning ratio of 1+2sin(θ/2)/(cos(θ/2)sin(θ/2))1 + 2 \sin(\theta/2) / (\cos(\theta/2) - \sin(\theta/2)). We also show that for any integer k2k \geq 2, ordered θ\theta-graphs with 4k+24k + 2 cones have a tight spanning ratio of 1/(12sin(θ/2))1 / (1 - 2 \sin(\theta/2)). We provide lower bounds for ordered θ\theta-graphs with 4k+34k + 3 and 4k+54k + 5 cones. For ordered θ\theta-graphs with 4k+24k + 2 and 4k+54k + 5 cones these lower bounds are strictly greater than the worst case spanning ratios of their unordered counterparts. These are the first results showing that ordered θ\theta-graphs have worse spanning ratios than unordered θ\theta-graphs. Finally, we show that, unlike their unordered counterparts, the ordered θ\theta-graphs with 4, 5, and 6 cones are not spanners

    Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations

    Full text link
    Consider a weighted graph G where vertices are points in the plane and edges are line segments. The weight of each edge is the Euclidean distance between its two endpoints. A routing algorithm on G has a competitive ratio of c if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. If the length of the path is at most c times the Euclidean distance from s to t, we say that the routing algorithm on G has a routing ratio of c.We present an online routing algorithm on the Delaunay triangulation with competitive and routing ratios of 5.90. This improves upon the best known algorithm that has competitive and routing ratio 15.48. The algorithm is a generalization of the deterministic 1-local routing algorithm by Chew on the L1-Delaunay triangulation. When a message follows the routing path produced by our algorithm, its header need only contain the coordinates of s and t. This is an improvement over the currently known competitive routing algorithms on the Delaunay triangulation, for which the header of a message must additionally contain partial sums of distances along the routing path.We also show that the routing ratio of any deterministic k-local algorithm is at least 1.70 for the Delaunay triangulation and 2.70 for the L1-Delaunay triangulation. In the case of the L1-Delaunay triangulation, this implies that even though there exists a path between two points x and y whose length is at most 2.61|[xy]| (where |[xy]| denotes the length of the line segment [xy]), it is not always possible to route a message along a path of length less than 2.70|[xy]|. From these bounds on the routing ratio, we derive lower bounds on the competitive ratio of 1.23 for Delaunay triangulations and 1.12 for L1-Delaunay triangulations

    Spanning Properties of Theta-Theta Graphs

    Full text link
    We study the spanning properties of Theta-Theta graphs. Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition the space around each vertex into a set of k cones, for some fixed integer k > 1, and select at most one edge per cone. The difference is in the way edges are selected. Yao-Yao graphs select an edge of minimum length, whereas Theta-Theta graphs select an edge of minimum orthogonal projection onto the cone bisector. It has been established that the Yao-Yao graphs with parameter k = 6k' have spanning ratio 11.67, for k' >= 6. In this paper we establish a first spanning ratio of 7.827.82 for Theta-Theta graphs, for the same values of kk. We also extend the class of Theta-Theta spanners with parameter 6k', and establish a spanning ratio of 16.7616.76 for k' >= 5. We surmise that these stronger results are mainly due to a tighter analysis in this paper, rather than Theta-Theta being superior to Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta graphs decreases to 4.64 as k' increases to 8. These are the first results on the spanning properties of Theta-Theta graphs.Comment: 20 pages, 6 figures, 3 table
    corecore