5 research outputs found

    Analysis and Evaluation of the Family of Sign Adaptive Algorithms

    Get PDF
    In this thesis, four novel sign adaptive algorithms proposed by the author were analyzed and evaluated for floating-point arithmetic operations. These four algorithms include Sign Regressor Least Mean Fourth (SRLMF), Sign Regressor Least Mean Mixed-Norm (SRLMMN), Normalized Sign Regressor Least Mean Fourth (NSRLMF), and Normalized Sign Regressor Least Mean Mixed-Norm (NSRLMMN). The performance of the latter three algorithms has been analyzed and evaluated for real-valued data only. While the performance of the SRLMF algorithm has been analyzed and evaluated for both cases of real- and complex-valued data. Additionally, four sign adaptive algorithms proposed by other researchers were also analyzed and evaluated for floating-point arithmetic operations. These four algorithms include Sign Regressor Least Mean Square (SRLMS), Sign-Sign Least Mean Square (SSLMS), Normalized Sign-Error Least Mean Square (NSLMS), and Normalized Sign Regressor Least Mean Square (NSRLMS). The performance of the latter three algorithms has been analyzed and evaluated for both cases of real- and complex-valued data. While the performance of the SRLMS algorithm has been analyzed and evaluated for complex-valued data only. The framework employed in this thesis relies on energy conservation approach. The energy conservation framework has been applied uniformly for the evaluation of the performance of the aforementioned eight sign adaptive algorithms proposed by the author and other researchers. In other words, the energy conservation framework stands out as a common theme that runs throughout the treatment of the performance of the aforementioned eight algorithms. Some of the results from the performance evaluation of the four novel sign adaptive algorithms proposed by the author, namely SRLMF, SRLMMN, NSRLMF, and NSRLMMN are as follows. It was shown that the convergence performance of the SRLMF and SRLMMN algorithms for real-valued data was similar to those of the Least Mean Fourth (LMF) and Least Mean Mixed-Norm (LMMN) algorithms, respectively. Moreover, it was also shown that the NSRLMF and NSRLMMN algorithms exhibit a compromised convergence performance for realvalued data as compared to the Normalized Least Mean Fourth (NLMF) and Normalized Least Mean Mixed-Norm (NLMMN) algorithms, respectively. Some misconceptions among biomedical signal processing researchers concerning the implementation of adaptive noise cancelers using the Sign-Error Least Mean Fourth (SLMF), Sign-Sign Least Mean Fourth (SSLMF), and their variant algorithms were also removed. Finally, three of the novel sign adaptive algorithms proposed by the author, namely SRLMF, SRLMMN, and NSRLMF have been successfully employed by other researchers and the author in applications ranging from power quality improvement in the distribution system and multiple artifacts removal from various physiological signals such as ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG)

    Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers

    Get PDF
    Although cascaded multistage adaptive noise cancellers have been employed before by researchers for multiple artifact removal from the ElectroCardioGram (ECG) signal, they all used the same adaptive algorithm in all the cascaded multi-stages for adjusting the adaptive filter weights. In this paper, we propose a cascaded 4-stage adaptive noise canceller for the removal of four artifacts present in the ECG signal, viz. baseline wander, motion artifacts, muscle artifacts, and 60 Hz Power Line Interference (PLI). We have investigated the performance of eight adaptive algorithms, viz. Least Mean Square (LMS), Least Mean Fourth (LMF), Least Mean Mixed-Norm (LMMN), Sign Regressor Least Mean Square (SRLMS), Sign Error Least Mean Square (SELMS), Sign-Sign Least Mean Square (SSLMS), Sign Regressor Least Mean Fourth (SRLMF), and Sign Regressor Least Mean Mixed-Norm (SRLMMN) in terms of Signal-to-Noise Ratio (SNR) improvement for removing the aforementioned four artifacts from the ECG signal. We employed the LMMN, LMF, LMMN, LMF algorithms in the proposed cascaded 4-stage adaptive noise canceller to remove the respective ECG artifacts as mentioned above. We succeeded in achieving an SNR improvement of 12.7319 dBs. The proposed cascaded 4-stage adaptive noise canceller employing the LMMN, LMF, LMMN, LMF algorithms outperforms those that employ the same algorithm in the four stages. One unique and powerful feature of our proposed cascaded 4-stage adaptive noise canceller is that it employs only those adaptive algorithms in the four stages, which are shown to be effective in removing the respective ECG artifacts as mentioned above. Such a scheme has not been investigated before in the literature

    Switched Reluctance Linear Motor Force Ripple Suppression Based on Fixed Frequency Implicit Generalized Predictive Self-Correction Controller

    Get PDF
    An implicit generalized predictive self-correction controller (IGPC) is proposed in this paper to suppress the force ripple of switched reluctance linear motors (SRLMs). Due to its good robustness and rolling optimization features, the dynamic matrix controller (DMC), a kind of multi-step model predictive controller, is considered an effective method to suppress the force ripple of SRLMs. However, because DMC uses a fixed predictive model, it has high requirements for the accuracy of the predictive model, and the non-linear SRLMs make it difficult to adapt to different loads. To ease this problem, the IGPC proposed in this paper adopts a more flexible predictive model and improves the generalized predictive controller (GPC) to avoid solving the Diophantine equation online, which can adapt to different loads and reduce the system's burden. Besides, the proposed IGPC reduces the computational burden during matrix operations compared to DMC. In the simulation and experimental test based on a 100W 6/4 double-sided SRLM (DSRLM), the proposed IGPC is compared with DMC, and the force distribution function (FDF) adopts the current hysteresis, the results show that the proposed IGPC a better force ripple suppressing performance and has better load capacity compared with DMC

    On the steady-state and tracking analysis of the complex SRLMS algorithm

    No full text
    In this paper, the steady-state and tracking behavior of the complex signed regressor least mean square (SRLMS) algorithm are analyzed in stationary and nonstationary environments, respectively. Here, the SRLMS algorithm is analyzed in the presence of complex-valued white and correlated Gaussian input data. Moreover, a comparison between the convergence performance of the complex SRLMS algorithm and the complex least mean square (LMS) algorithm is also presented. Finally, simulation results are presented to support our analytical findings
    corecore