15,581 research outputs found

    Stochastic approximation of score functions for Gaussian processes

    Full text link
    We discuss the statistical properties of a recently introduced unbiased stochastic approximation to the score equations for maximum likelihood calculation for Gaussian processes. Under certain conditions, including bounded condition number of the covariance matrix, the approach achieves O(n)O(n) storage and nearly O(n)O(n) computational effort per optimization step, where nn is the number of data sites. Here, we prove that if the condition number of the covariance matrix is bounded, then the approximate score equations are nearly optimal in a well-defined sense. Therefore, not only is the approximation efficient to compute, but it also has comparable statistical properties to the exact maximum likelihood estimates. We discuss a modification of the stochastic approximation in which design elements of the stochastic terms mimic patterns from a 2n2^n factorial design. We prove these designs are always at least as good as the unstructured design, and we demonstrate through simulation that they can produce a substantial improvement over random designs. Our findings are validated by numerical experiments on simulated data sets of up to 1 million observations. We apply the approach to fit a space-time model to over 80,000 observations of total column ozone contained in the latitude band 40∘40^{\circ}-50∘50^{\circ}N during April 2012.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS627 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Good, great, or lucky? Screening for firms with sustained superior performance using heavy-tailed priors

    Full text link
    This paper examines historical patterns of ROA (return on assets) for a cohort of 53,038 publicly traded firms across 93 countries, measured over the past 45 years. Our goal is to screen for firms whose ROA trajectories suggest that they have systematically outperformed their peer groups over time. Such a project faces at least three statistical difficulties: adjustment for relevant covariates, massive multiplicity, and longitudinal dependence. We conclude that, once these difficulties are taken into account, demonstrably superior performance appears to be quite rare. We compare our findings with other recent management studies on the same subject, and with the popular literature on corporate success. Our methodological contribution is to propose a new class of priors for use in large-scale simultaneous testing. These priors are based on the hypergeometric inverted-beta family, and have two main attractive features: heavy tails and computational tractability. The family is a four-parameter generalization of the normal/inverted-beta prior, and is the natural conjugate prior for shrinkage coefficients in a hierarchical normal model. Our results emphasize the usefulness of these heavy-tailed priors in large multiple-testing problems, as they have a mild rate of tail decay in the marginal likelihood m(y)m(y)---a property long recognized to be important in testing.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS512 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore