11,050 research outputs found

    On the Size of Weights in Randomized Search Heuristics

    Get PDF
    Runtime analyses of randomized search heuristics for combinatorial optimization problems often depend on the size of the largest weight. We consider replacing the given set of weights with smaller weights such that the behavior of the randomized search heuristic does not change. Upper bounds on the size of the new, equivalent weights allow us to obtain upper bounds on the expected runtime of such randomized search heuristics independent of the size of the actual weights. Furthermore we give lower bounds on the largest weights for worst-case instances. Finally we present some experimental results, including examples for worst-case instances

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    Black-Box Complexity of the Binary Value Function

    Full text link
    The binary value function, or BinVal, has appeared in several studies in theory of evolutionary computation as one of the extreme examples of linear pseudo-Boolean functions. Its unbiased black-box complexity was previously shown to be at most log2n+2\lceil \log_2 n \rceil + 2, where nn is the problem size. We augment it with an upper bound of log2n+2.42141558o(1)\log_2 n + 2.42141558 - o(1), which is more precise for many values of nn. We also present a lower bound of log2n+1.1186406o(1)\log_2 n + 1.1186406 - o(1). Additionally, we prove that BinVal is an easiest function among all unimodal pseudo-Boolean functions at least for unbiased algorithms.Comment: 24 pages, one figure. An extended two-page abstract of this work will appear in proceedings of the Genetic and Evolutionary Computation Conference, GECCO'1

    A nonmonotone GRASP

    Get PDF
    A greedy randomized adaptive search procedure (GRASP) is an itera- tive multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the con- struction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solu- tion. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut prob- lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP)
    corecore