152,350 research outputs found

    Branch-depth: Generalizing tree-depth of graphs

    Get PDF
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 34 pages, 2 figure

    On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings

    Get PDF
    The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F\cal F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F\cal F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with mm edges has length at least 43m\tfrac43m, and we show that this inequality is strict for graphs of F\cal F. We also construct the first known snark with no cycle cover of length less than 43m+2\tfrac43m+2.Comment: 17 pages, 8 figure
    corecore