108 research outputs found

    The convexification effect of Minkowski summation

    Full text link
    Let us define for a compact set ARnA \subset \mathbb{R}^n the sequence A(k)={a1++akk:a1,,akA}=1k(A++Ak times). A(k) = \left\{\frac{a_1+\cdots +a_k}{k}: a_1, \ldots, a_k\in A\right\}=\frac{1}{k}\Big(\underset{k\ {\rm times}}{\underbrace{A + \cdots + A}}\Big). It was independently proved by Shapley, Folkman and Starr (1969) and by Emerson and Greenleaf (1969) that A(k)A(k) approaches the convex hull of AA in the Hausdorff distance induced by the Euclidean norm as kk goes to \infty. We explore in this survey how exactly A(k)A(k) approaches the convex hull of AA, and more generally, how a Minkowski sum of possibly different compact sets approaches convexity, as measured by various indices of non-convexity. The non-convexity indices considered include the Hausdorff distance induced by any norm on Rn\mathbb{R}^n, the volume deficit (the difference of volumes), a non-convexity index introduced by Schneider (1975), and the effective standard deviation or inner radius. After first clarifying the interrelationships between these various indices of non-convexity, which were previously either unknown or scattered in the literature, we show that the volume deficit of A(k)A(k) does not monotonically decrease to 0 in dimension 12 or above, thus falsifying a conjecture of Bobkov et al. (2011), even though their conjecture is proved to be true in dimension 1 and for certain sets AA with special structure. On the other hand, Schneider's index possesses a strong monotonicity property along the sequence A(k)A(k), and both the Hausdorff distance and effective standard deviation are eventually monotone (once kk exceeds nn). Along the way, we obtain new inequalities for the volume of the Minkowski sum of compact sets, falsify a conjecture of Dyn and Farkhi (2004), demonstrate applications of our results to combinatorial discrepancy theory, and suggest some questions worthy of further investigation.Comment: 60 pages, 7 figures. v2: Title changed. v3: Added Section 7.2 resolving Dyn-Farkhi conjectur

    Concavity properties of extensions of the parallel volume

    Full text link
    In this paper we establish concavity properties of two extensions of the classical notion of the outer parallel volume. On the one hand, we replace the Lebesgue measure by more general measures. On the other hand, we consider a functional version of the outer parallel sets.Comment: - Corrected typos - References updated - 19 page

    A new proof of the Wulff-Gage isoperimetric inequality and its applications

    Full text link
    A new proof of the Wulff-Gage isoperimetric inequality for origin-symmetric convex bodies is provided. As its applications, we prove the uniqueness of log-Minkowski problem and a new proof of the log-Minkowski inequality of curvature entropy for origin-symmetric convex bodies of C2C^{2} boundaries in R2\mathbb R^{2} is given
    corecore