13,221 research outputs found

    A measurement-based congestion alarm for self-similar traffic

    Get PDF
    Self-similar traffic is distinguished by positive correlation, which can be exploited for better traffic management. Inspired by measurement-based admission control schemes, a measurement-based congestion alarm is proposed. The aggregate traffic at an output port of a switch or router in a high-speed network is modeled by a fractional Gaussian noise process. Traffic measurements are performed in regular time intervals to determine the current traffic loading. This information is then used to predict the loading situation in the near future. If congestion is likely to occur, a congestion alarm is set off and appropriate network management functions taken to alleviate the possible congestion. The above constitutes a closed loop feedback control mechanism that maintains high resource utilization. Simulation results show that the proposed scheme, when used with dynamic bandwidth allocation, reduces bandwidth requirements by more than 20%.published_or_final_versio

    Statistical multiplexing and connection admission control in ATM networks

    Get PDF
    Asynchronous Transfer Mode (ATM) technology is widely employed for the transport of network traffic, and has the potential to be the base technology for the next generation of global communications. Connection Admission Control (CAC) is the effective traffic control mechanism which is necessary in ATM networks in order to avoid possible congestion at each network node and to achieve the Quality-of-Service (QoS) requested by each connection. CAC determines whether or not the network should accept a new connection. A new connection will only be accepted if the network has sufficient resources to meet its QoS requirements without affecting the QoS commitments already made by the network for existing connections. The design of a high-performance CAC is based on an in-depth understanding of the statistical characteristics of the traffic sources

    Renegotiation based dynamic bandwidth allocation for selfsimilar VBR traffic

    Get PDF
    The provision of QoS to applications traffic depends heavily on how different traffic types are categorized and classified, and how the prioritization of these applications are managed. Bandwidth is the most scarce network resource. Therefore, there is a need for a method or system that distributes an available bandwidth in a network among different applications in such a way that each class or type of traffic receives their constraint QoS requirements. In this dissertation, a new renegotiation based dynamic resource allocation method for variable bit rate (VBR) traffic is presented. First, pros and cons of available off-line methods that are used to estimate selfsimilarity level (represented by Hurst parameter) of a VBR traffic trace are empirically investigated, and criteria to select measurement parameters for online resource management are developed. It is shown that wavelet analysis based methods are the strongest tools in estimation of Hurst parameter with their low computational complexities, compared to the variance-time method and R/S pox plot. Therefore, a temporal energy distribution of a traffic data arrival counting process among different frequency sub-bands is considered as a traffic descriptor, and then a robust traffic rate predictor is developed by using the Haar wavelet analysis. The empirical results show that the new on-line dynamic bandwidth allocation scheme for VBR traffic is superior to traditional dynamic bandwidth allocation methods that are based on adaptive algorithms such as Least Mean Square, Recursive Least Square, and Mean Square Error etc. in terms of high utilization and low queuing delay. Also a method is developed to minimize the number of bandwidth renegotiations to decrease signaling costs on traffic schedulers (e.g. WFQ) and networks (e.g. ATM). It is also quantified that the introduced renegotiation based bandwidth management scheme decreases heavytailedness of queue size distributions, which is an inherent impact of traffic self similarity. The new design increases the achieved utilization levels in the literature, provisions given queue size constraints and minimizes the number of renegotiations simultaneously. This renegotiation -based design is online and practically embeddable into QoS management blocks, edge routers and Digital Subscriber Lines Access Multiplexers (DSLAM) and rate adaptive DSL modems

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Quality of Service optimisation framework for Next Generation Networks

    Get PDF
    Within recent years, the concept of Next Generation Networks (NGN) has become widely accepted within the telecommunication area, in parallel with the migration of telecommunication networks from traditional circuit-switched technologies such as ISDN (Integrated Services Digital Network) towards packet-switched NGN. In this context, SIP (Session Initiation Protocol), originally developed for Internet use only, has emerged as the major signalling protocol for multimedia sessions in IP (Internet Protocol) based NGN. One of the traditional limitations of IP when faced with the challenges of real-time communications is the lack of quality support at the network layer. In line with NGN specification work, international standardisation bodies have defined a sophisticated QoS (Quality of Service) architecture for NGN, controlling IP transport resources and conventional IP QoS mechanisms through centralised higher layer network elements via cross-layer signalling. Being able to centrally control QoS conditions for any media session in NGN without the imperative of a cross-layer approach would result in a feasible and less complex NGN architecture. Especially the demand for additional network elements would be decreased, resulting in the reduction of system and operational costs in both, service and transport infrastructure. This thesis proposes a novel framework for QoS optimisation for media sessions in SIP-based NGN without the need for cross-layer signalling. One key contribution of the framework is the approach to identify and logically group media sessions that encounter similar QoS conditions, which is performed by applying pattern recognition and clustering techniques. Based on this novel methodology, the framework provides functions and mechanisms for comprehensive resource-saving QoS estimation, adaptation of QoS conditions, and support of Call Admission Control. The framework can be integrated with any arbitrary SIP-IP-based real-time communication infrastructure, since it does not require access to any particular QoS control or monitoring functionalities provided within the IP transport network. The proposed framework concept has been deployed and validated in a prototypical simulation environment. Simulation results show MOS (Mean Opinion Score) improvement rates between 53 and 66 percent without any active control of transport network resources. Overall, the proposed framework comes as an effective concept for central controlled QoS optimisation in NGN without the need for cross-layer signalling. As such, by either being run stand-alone or combined with conventional QoS control mechanisms, the framework provides a comprehensive basis for both the reduction of complexity and mitigation of issues coming along with QoS provision in NGN

    Retaking Ability Tests in a Selection Setting: Implications for Practice Effects, Training Performance, and Turnover

    Get PDF
    This field study investigated the effect of retaking identical selection tests on subsequent test scores of 4,726 candidates for law enforcement positions. For both cognitive ability and oral communication ability selection tests, candidates produced significant score increases between the 1st and 2nd and the 2nd and 3rd test administrations. Furthermore, the repeat testing relationships with posthire training performance and turnover were examined in a sample of 1,515 candidates eventually selected into the organization. As predicted from persistence and continuance commitment rationales, the number of tests necessary to gain entry into the organization was positively associated with training performance and negatively associated with turnover probability
    • …
    corecore