2 research outputs found

    On the role of stiffness design for fingertip trajectories of underactuated modular soft hands

    Get PDF
    In this work, we propose a method to compute the stiffness of flexible joints and its realization in order to let the fingers track a certain predefined trajectory. We refer to tendon-driven, underactuated and passively compliant hands composed of deformable joints and rigid links. Specific stiffness and pre-form shapes can be assigned to the finger joints can be given s such that a single-cable actuation can be used. We firstly define a procedure to determine suitable joints stiffness and then we propose a possible realization of soft joints using rapid prototyping techniques. The stiffness computation is obtained leveraging on the the mechanics of tendon-driven hands and on compliant systems, while for its implementation beam theory has been exploited. We validate the proposed framework both in simulation and with experiments using the robotic Soft-SixthFinger, a wearable robot for grasping compensation in patients with a paretic hand, as a case study. The proposed framework can be used to design the stiffness of the passive joints in several model of underactuated tendon-driven soft hands so to improve their grasping capabilities

    Structural Optimization of Adaptive Soft Fin Ray Fingers with Variable Stiffening Capability

    Get PDF
    Soft and adaptable grippers are desired for their ability to operate effectively in unstructured or dynamically changing environments, especially when interacting with delicate or deformable targets. However, utilizing soft bodies often comes at the expense of reduced carrying payload and limited performance in high-force applications. Hence, methods for achieving variable stiffness soft actuators are being investigated to broaden the applications of soft grippers. This paper investigates the structural optimization of adaptive soft fingers based on the Fin Ray® effect (Soft Fin Ray), featuring a passive stiffening mechanism that is enabled via layer jamming between deforming flexible ribs. A finite element model of the proposed Soft Fin Ray structure is developed and experimentally validated, with the aim of enhancing the layer jamming behavior for better grasping performance. The results showed that through structural optimization, initial contact forces before jamming can be minimized and final contact forces after jamming can be significantly enhanced, without downgrading the desired passive adaptation to objects. Thus, applications for Soft Fin Ray fingers can range from adaptive delicate grasping to high-force manipulation tasks
    corecore