172,181 research outputs found

    The Role of Community in Disaster Mitigation: The Case of Umbulharjo Merapi Monitoring Community on Merapi Mount, Indonesia

    Get PDF
    Natural disasters are events that often occur in Southeast Asia, including in Indonesia. As it is situated in the ring of fire area and has faced different kinds of natural disaster events, Indonesia has their own experiences in disaster risk management, one of which is the involvement and active role of the community. Therefore, this study will analyze the important role of Umbulharjo Merapi Monitoring Community (UMMC)––a community that focuses on monitoring Mount Merapi in the Special Region of Yogyakarta––that is committed as the provider of information regarding Merapi condition through a direct monitor and plays the role in initiating programs that focus on disaster mitigation. The results of this study aims to show that the role of the community is necessarily required in the mitigation program so that it can be a reference for disaster management models in disaster-prone areas in the Southeast Asian region. This study used a qualitative descriptive method and the data were obtained through an in-depth interview process involving community members, academicians and the government of Sleman Regency. The results of the study revealed that the disaster mitigation carried out by UMMC consisted of four stages that are: identification, analysis, treating, monitoring and evaluation. Through these four stages, several programs for disaster risk reduction are arranged, such as counselling, training, collaborating with stakeholders, and mentoring

    Developments in the Safety Science Domain and in Safety Management From the 1970s Till the 1979 Near Disaster at Three Mile Island

    Get PDF
    Objective: What has been the influence of general management schools and safety research into causes of accidents and disasters on managing safety from 1970 till 1979? Method: The study was limited to original articles and documents, written in English or Dutch from the period under concern. For the Netherlands, the professional journal De Veiligheid (Safety) has been consulted. Results and conclusions: Dominant management approaches started with 1) the classical management starting from the 19th century, with scientific management from the start of the 20st century as a main component. During the interwar period 2) behavioural management started, based on behaviourism, followed by 3) quantitative management from the Second World War onwards. After the war 4) modern management became important. A company was seen as an open system, interacting with an external environment with external stakeholders. These schools management were not exclusive, but have existed in the period together. Early 20th century, the U.S. 'Safety First' movement was the starting point of this knowledge development on managing safety, with cost reduction and production efficiency as key drivers. Psychological models and metaphors explained accidents from ‘unsafe acts’. And safety was managed with training and selection of reckless workers, all in line with scientific management. Supported by behavioural management, this approach remained dominant for many years, even long after World War II. Influenced by quantitative management, potential and actual disasters after the war led to two approaches; loss prevention (up-scaling process industry) and reliability engineering (inherently dangerous processes in the aerospace and nuclear industries). The distinction between process safety and occupational safety became clear after the war, and the two developed into relatively independent domains. In occupational safety in the 1970s human errors thought to be symptoms of mismanagement. The term ‘safety management’ was introduced in scientific safety literature as well as concepts as loose, and tightly coupled processes, organizational culture, incubation of a disaster and mechanisms blinding organizations for portents of disaster scenarios. Loss prevention remained technically oriented. Till 1979 there was no clear relation with safety management. Reliability engineering, based on systems theory did have that relation with the MORT technique as a management audit. The Netherlands mainly followed Anglo-Saxon developments. Late 1970s, following international safety symposia in The Hague and Delft, independent research started in The Netherland

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    Games for a new climate: experiencing the complexity of future risks

    Full text link
    This repository item contains a single issue of the Pardee Center Task Force Reports, a publication series that began publishing in 2009 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future.This report is a product of the Pardee Center Task Force on Games for a New Climate, which met at Pardee House at Boston University in March 2012. The 12-member Task Force was convened on behalf of the Pardee Center by Visiting Research Fellow Pablo Suarez in collaboration with the Red Cross/Red Crescent Climate Centre to “explore the potential of participatory, game-based processes for accelerating learning, fostering dialogue, and promoting action through real-world decisions affecting the longer-range future, with an emphasis on humanitarian and development work, particularly involving climate risk management.” Compiled and edited by Janot Mendler de Suarez, Pablo Suarez and Carina Bachofen, the report includes contributions from all of the Task Force members and provides a detailed exploration of the current and potential ways in which games can be used to help a variety of stakeholders – including subsistence farmers, humanitarian workers, scientists, policymakers, and donors – to both understand and experience the difficulty and risks involved related to decision-making in a complex and uncertain future. The dozen Task Force experts who contributed to the report represent academic institutions, humanitarian organization, other non-governmental organizations, and game design firms with backgrounds ranging from climate modeling and anthropology to community-level disaster management and national and global policymaking as well as game design.Red Cross/Red Crescent Climate Centr

    Comparative analysis of spring flood risk reduction measures in Alaska, United States and the Sakha Republic, Russia

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017River ice thaw and breakup are an annual springtime phenomena in the North. Depending on regional weather patterns and river morphology, breakups can result in catastrophic floods in exposed and vulnerable communities. Breakup flood risk is especially high in rural and remote northern communities, where flood relief and recovery are complicated by unique geographical and climatological features, and limited physical and communication infrastructure. Proactive spring flood management would significantly minimize the adverse impacts of spring floods. Proactive flood management entails flood risk reduction through advances in ice jam and flood prevention, forecasting and mitigation, and community preparedness. With the goal to identify best practices in spring flood risk reduction, I conducted a comparative case study between two flood-prone communities, Galena in Alaska, United States and Edeytsy in the Sakha Republic, Russia. Within a week from each other, Galena and Edeytsy sustained major floods in May 2013. Methods included focus groups with the representatives from flood managing agencies, surveys of families impacted by the 2013 floods, observations on site, and archival review. Comparative parameters of the study included natural and human causes of spring floods, effectiveness of spring flood mitigation and preparedness strategies, and the role of interagency communication and cooperation in flood risk reduction. The analysis revealed that spring flood risk in Galena and Edeytsy results from complex interactions among a series of natural processes and human actions that generate conditions of hazard, exposure, and vulnerability. Therefore, flood risk in Galena and Edeytsy can be reduced by managing conditions of ice-jam floods, and decreasing exposure and vulnerability of the at-risk populations. Implementing the Pressure and Release model to analyze the vulnerability progression of Edeytsy and Galena points to common root causes at the two research sites, including colonial heritage, unequal distribution of resources and power, top-down governance, and limited inclusion of local communities in the decision-making process. To construct an appropriate flood risk reduction framework it is important to establish a dialogue among the diverse stakeholders on potential solutions, arriving at a range of top-down and bottom-up initiatives and in conjunction selecting the appropriate strategies. Both communities have progressed in terms of greater awareness of the hazard, reduction in vulnerabilities, and a shift to more reliance on shelter-in-place. However, in neither community have needed improvements in levee protection been completed. Dialogue between outside authorities and the community begins earlier and is more intensive for Edeytsy, perhaps accounting for Edeytsy's more favorable rating of risk management and response than Galena's

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    The surveyor’s role in monitoring, mitigating, and adapting to climate change

    Get PDF
    • 

    corecore