30 research outputs found

    Orthonormal and biorthonormal filter banks as convolvers, and convolutional coding gain

    Get PDF
    Convolution theorems for filter bank transformers are introduced. Both uniform and nonuniform decimation ratios are considered, and orthonormal as well as biorthonormal cases are addressed. All the theorems are such that the original convolution reduces to a sum of shorter, decoupled convolutions in the subbands. That is, there is no need to have cross convolution between subbands. For the orthonormal case, expressions for optimal bit allocation and the optimized coding gain are derived. The contribution to coding gain comes partly from the nonuniformity of the signal spectrum and partly from nonuniformity of the filter spectrum. With one of the convolved sequences taken to be the unit pulse function,,e coding gain expressions reduce to those for traditional subband and transform coding. The filter-bank convolver has about the same computational complexity as a traditional convolver, if the analysis bank has small complexity compared to the convolution itself

    The density-matrix renormalization group

    Full text link
    The density-matrix renormalization group (DMRG) is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly acquired the status of method of choice for numerical studies of one-dimensional quantum systems. Its applications to the calculation of static, dynamic and thermodynamic quantities in such systems are reviewed. The potential of DMRG applications in the fields of two-dimensional quantum systems, quantum chemistry, three-dimensional small grains, nuclear physics, equilibrium and non-equilibrium statistical physics, and time-dependent phenomena is discussed. This review also considers the theoretical foundations of the method, examining its relationship to matrix-product states and the quantum information content of the density matrices generated by DMRG.Comment: accepted by Rev. Mod. Phys. in July 2004; scheduled to appear in the January 2005 issu

    Spatio-angular fluorescence microscopy III. Constrained angular diffusion, polarized excitation, and high-NA imaging

    Full text link
    We investigate rotational diffusion of fluorescent molecules in angular potential wells, the excitation and subsequent emissions from these diffusing molecules, and the imaging of these emissions with high-NA aplanatic optical microscopes. Although dipole emissions only transmit six low-frequency angular components, we show that angular structured illumination can alias higher frequency angular components into the passband of the imaging system. We show that the number of measurable angular components is limited by the relationships between three time scales: the rotational diffusion time, the fluorescence decay time, and the acquisition time. We demonstrate our model by simulating a numerical phantom in the limits of fast angular diffusion, slow angular diffusion, and weak potentials.Comment: 22 pages, 5 figure

    Interpretation of Coupled-Cluster Many-Electron Dynamics in Terms of Stationary States

    Full text link
    We demonstrate theoretically and numerically that laser-driven many-electron dynamics, as described by bivariational time-dependent coupled-cluster theory, may be analyzed in terms of stationary-state populations. Projectors heuristically defined from linear response theory and equation-of-motion coupled-cluster theory are proposed for the calculation of stationary-state populations during interaction with laser pulses or other external forces, and conservation laws of the populations are discussed. Numerical tests of the proposed projectors, involving both linear and nonlinear optical processes for the He and Be atoms, and for the LiH, CH+^+, and LiF molecules, show that the laser-driven evolution of the stationary-state populations at the coupled-cluster singles-and-doubles (CCSD) level is very close to that obtained by full configuration-interaction theory provided all stationary states actively participating in the dynamics are sufficiently well approximated. When double-excited states are important for the dynamics, the quality of the CCSD results deteriorate. Observing that populations computed from the linear-response projector may show spurious small-amplitude, high-frequency oscillations, the equation-of-motion projector emerges as the most promising approach to stationary-state populations.Comment: 58 pages, 14 figure

    Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons : comparison and implementation

    Get PDF
    The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models.Characterizing the dynamics of biophysically modeled, large neuronal networks usually involves extensive numerical simulations. As an alternative to this expensive procedure we propose efficient models that describe the network activity in terms of a few ordinary differential equations. These systems are simple to solve and allow for convenient investigations of asynchronous, oscillatory or chaotic network states because linear stability analyses and powerful related methods are readily applicable. We build upon two research lines on which substantial efforts have been exerted in the last two decades: (i) the development of single neuron models of reduced complexity that can accurately reproduce a large repertoire of observed neuronal behavior, and (ii) different approaches to approximate the Fokker-Planck equation that represents the collective dynamics of large neuronal networks. We combine these advances and extend recent approximation methods of the latter kind to obtain spike rate models that surprisingly well reproduce the macroscopic dynamics of the underlying neuronal network. At the same time the microscopic properties are retained through the single neuron model parameters. To enable a fast adoption we have released an efficient Python implementation as open source software under a free license

    Reconstruction from non-uniform samples

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 79-81).Exact reconstruction of a band-limited signal from its non-uniform samples involves the use of Lagrange interpolation, which is impractical to implement as it is computationally difficult. This thesis develops approximate reconstruction methods based on time-warping to obtain reconstruction of band-limited signals from non-uniform samples. A review of non-uniform sampling theorems is presented followed by an alternative interpretation of the Lagrange interpolation kernel by decomposing the kernel into its constituent components. A discussion of time-warping and its use in the context of non-uniform sampling is made. This includes an alternative interpretation known as the delay-modulation, which we show to be a simpler representation for a specific case of non-uniform sampling where the sample instants are deviations from a uniform grid. Based on some essential characteristics of the Lagrange kernel, a framework using a modulated time-warped sine function is formed to obtain various approximations to the Lagrange kernel. The thesis also formulates a vector space representation of non-uniform sampling and interpolation and incorporates warped sinc functions to obtain faster convergence in iterative algorithms for reconstruction of band-limited signals from non-uniform samples.by Kwang Siong Jeremy Leow.S.M
    corecore