199,486 research outputs found

    Bounds on the radius and status of graphs

    Full text link
    Two classical concepts of centrality in a graph are the median and the center. The connected notions of the status and the radius of a graph seem to be in no relation. In this paper, however, we show a clear connection of both concepts, as they obtain their minimum and maximum values at the same type of tree graphs. Trees with fixed maximum degree and extremum radius and status, resp., are characterized. The bounds on radius and status can be transferred to general connected graphs via spanning trees. A new method of proof allows not only to regain results of Lin et al. on graphs with extremum status, but it allows also to prove analogous results on graphs with extremum radius

    Sharp Bounds for the Signless Laplacian Spectral Radius in Terms of Clique Number

    Full text link
    In this paper, we present a sharp upper and lower bounds for the signless Laplacian spectral radius of graphs in terms of clique number. Moreover, the extremal graphs which attain the upper and lower bounds are characterized. In addition, these results disprove the two conjectures on the signless Laplacian spectral radius in [P. Hansen and C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs, Linear Algebra Appl., 432(2010) 3319-3336].Comment: 15 pages 1 figure; linear algebra and its applications 201

    Spectral radius of finite and infinite planar graphs and of graphs of bounded genus

    Get PDF
    It is well known that the spectral radius of a tree whose maximum degree is DD cannot exceed 2D12\sqrt{D-1}. In this paper we derive similar bounds for arbitrary planar graphs and for graphs of bounded genus. It is proved that a the spectral radius ρ(G)\rho(G) of a planar graph GG of maximum vertex degree D4D\ge 4 satisfies Dρ(G)8D16+7.75\sqrt{D}\le \rho(G)\le \sqrt{8D-16}+7.75. This result is best possible up to the additive constant--we construct an (infinite) planar graph of maximum degree DD, whose spectral radius is 8D16\sqrt{8D-16}. This generalizes and improves several previous results and solves an open problem proposed by Tom Hayes. Similar bounds are derived for graphs of bounded genus. For every kk, these bounds can be improved by excluding K2,kK_{2,k} as a subgraph. In particular, the upper bound is strengthened for 5-connected graphs. All our results hold for finite as well as for infinite graphs. At the end we enhance the graph decomposition method introduced in the first part of the paper and apply it to tessellations of the hyperbolic plane. We derive bounds on the spectral radius that are close to the true value, and even in the simplest case of regular tessellations of type {p,q}\{p,q\} we derive an essential improvement over known results, obtaining exact estimates in the first order term and non-trivial estimates for the second order asymptotics
    corecore