9,864 research outputs found

    An Opportunistic-Non Orthogonal Multiple Access based Cooperative Relaying system over Rician Fading Channels

    Full text link
    Non-orthogonal Multiple Access (NOMA) has become a salient technology for improving the spectral efficiency of the next generation 5G wireless communication networks. In this paper, the achievable average rate of an Opportunistic Non-Orthogonal Multiple Access (O-NOMA) based Cooperative Relaying System (CRS) is studied under Rician fading channels with Channel State Information (CSI) available at the source terminal. Based on CSI, for opportunistic transmission, the source immediately chooses either the direct transmission or the cooperative NOMA transmission using the relay, which can provide better achievable average rate performance than the existing Conventional-NOMA (C-NOMA) based CRS with no CSI at the source node. Furthermore, a mathematical expression is also derived for the achievable average rate and the results are compared with C-NOMA based CRS with no CSI at the transmitter end, over a range of increasing power allocation coefficients, transmit Signal-to-Noise Ratios (SNRs) and average channel powers. Numerical results show that the CRS using O-NOMA with CSI achieves better spectral efficiency in terms of the achievable average rate than the Conventional-NOMA based CRS without CSI. To check the consistency of the derived analytical results, Monte Carlo simulations are performed which verify that the results are consistent and matched well with the simulation results.Comment: arXiv admin note: substantial text overlap with arXiv:1709.0822

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Secure Communication with a Wireless-Powered Friendly Jammer

    Get PDF
    In this paper, we propose to use a wireless-powered friendly jammer to enable secure communication between a source node and destination node, in the presence of an eavesdropper. We consider a two-phase communication protocol with fixed-rate transmission. In the first phase, wireless power transfer is conducted from the source to the jammer. In the second phase, the source transmits the information-bearing signal under the protection of a jamming signal sent by the jammer using the harvested energy in the first phase. We analytically characterize the long-time behavior of the proposed protocol and derive a closed-form expression for the throughput. We further optimize the rate parameters for maximizing the throughput subject to a secrecy outage probability constraint. Our analytical results show that the throughput performance differs significantly between the single-antenna jammer case and the multi-antenna jammer case. For instance, as the source transmit power increases, the throughput quickly reaches an upper bound with single-antenna jammer, while the throughput grows unbounded with multi-antenna jammer. Our numerical results also validate the derived analytical results.Comment: accepted for publication in IEEE Transactions on Wireless Communication
    • …
    corecore