29,611 research outputs found

    Optimal Receiver Design for Diffusive Molecular Communication With Flow and Additive Noise

    Full text link
    In this paper, we perform receiver design for a diffusive molecular communication environment. Our model includes flow in any direction, sources of information molecules in addition to the transmitter, and enzymes in the propagation environment to mitigate intersymbol interference. We characterize the mutual information between receiver observations to show how often independent observations can be made. We derive the maximum likelihood sequence detector to provide a lower bound on the bit error probability. We propose the family of weighted sum detectors for more practical implementation and derive their expected bit error probability. Under certain conditions, the performance of the optimal weighted sum detector is shown to be equivalent to a matched filter. Receiver simulation results show the tradeoff in detector complexity versus achievable bit error probability, and that a slow flow in any direction can improve the performance of a weighted sum detector.Comment: 14 pages, 7 figures, 1 appendix. To appear in IEEE Transactions on NanoBioscience (submitted July 31, 2013, revised June 18, 2014, accepted July 7, 2014

    Diffusive MIMO Molecular Communications: Channel Estimation, Equalization and Detection

    Full text link
    In diffusion-based communication, as for molecular systems, the achievable data rate is low due to the stochastic nature of diffusion which exhibits a severe inter-symbol-interference (ISI). Multiple-Input Multiple-Output (MIMO) multiplexing improves the data rate at the expense of an inter-link interference (ILI). This paper investigates training-based channel estimation schemes for diffusive MIMO (D-MIMO) systems and corresponding equalization methods. Maximum likelihood and least-squares estimators of mean channel are derived, and the training sequence is designed to minimize the mean square error (MSE). Numerical validations in terms of MSE are compared with Cramer-Rao bound derived herein. Equalization is based on decision feedback equalizer (DFE) structure as this is effective in mitigating diffusive ISI/ILI. Zero-forcing, minimum MSE and least-squares criteria have been paired to DFE, and their performances are evaluated in terms of bit error probability. Since D-MIMO systems are severely affected by the ILI because of short transmitters inter-distance, D-MIMO time interleaving is exploited as countermeasure to mitigate the ILI with remarkable performance improvements. The feasibility of a block-type communication including training and data equalization is explored for D-MIMO, and system-level performances are numerically derived.Comment: Accepted paper at IEEE transaction on Communicatio
    • …
    corecore