4,824 research outputs found

    Transmission capacity of wireless ad hoc networks with successive interference cancellation

    Get PDF
    IEEE Transactions on Information Theory, 53(8): pp. 2799-2814.The transmission capacity (TC) of a wireless ad hoc network is defined as the maximum spatial intensity of successful transmissions such that the outage probability does not exceed some specified threshold. This work studies the improvement in TC obtainable with successive interference cancellation (SIC), an important receiver technique that has been shown to achieve the capacity of several classes of multiuser channels, but has not been carefully evaluated in the context of ad hoc wireless networks. This paper develops closed-form upper bounds and easily computable lower bounds for the TC of ad hoc networks with SIC receivers, for both perfect and imperfect SIC. The analysis applies to any multiuser receiver that cancels the K strongest interfering signals by a factor : E [0; 1]. In addition to providing the first closed-form capacity results for SIC in ad hoc networks, design-relevant insights are made possible. In particular, it is shown that SIC should be used with direct sequence spread spectrum. Also, any imperfections in the interference cancellation rapidly degrade its usefulness. More encouragingly, only a few—often just one—interfering nodes need to be canceled in order to get the vast majority of the available performance gain

    Multi-hop Relaying with Optimal Decode-and-Forward Transmission Rate and Self-Immunity to Mutual Interference among Wireless Nodes

    Get PDF
    Abstract-In this paper we show that multi-hop relaying with immunity to mutual interference among relays can be realized in multi-hop ad hoc wireless networks with full-duplex decodeand-forward relays that exploit appropriate packet encoding and successive interference cancellation. This resolves fundamentally the mutual interference challenge involved in multi-hop wireless network research. Based on this interference immune phenomenon, a relay selection algorithm is developed to find the optimal hop count and the optimal relays that maximize sourcedestination decode-and-forward transmission rate. The algorithm constructs the optimal multi-hop paths from a source node to all other network nodes simultaneously with a quadratic complexity O(N 2 ), where N is the network size. This algorithm is efficient for wireless networks with arbitrary size, including extremely large sizes, and can potentially play a fundamental role in exploring multi-hop wireless networks. Surprisingly, this wireless networking algorithm is similar to the well-known Djikstra's algorithm of wired networks. Simulations are conducted to demonstrate the efficiency and the superior performance of the new algorithm

    Transmission Capacity of Full-Duplex MIMO Ad-Hoc Network with Limited Self-Interference Cancellation

    Get PDF
    In this paper, we propose a joint transceiver beamforming design to simultaneously mitigate self-interference (SI) and partial inter-node interference for full-duplex multiple-input and multiple-output ad-hoc network, and then derive the transmission capacity upper bound (TC-UB) for the corresponding network. Condition on a specified transceiver antenna's configuration, we allow the SI effect to be cancelled at transmitter side, and offer an additional degree-of-freedom at receiver side for more inter-node interference cancellation. In addition, due to the proposed beamforming design and imperfect SI channel estimation, the conventional method to obtain the TC-UB is not applicable. This motivates us to exploit the dominating interferer region plus Newton-Raphson method to iteratively formulate the TC-UB. The results show that the derived TC-UB is quite close to the actual one especially when the number of receive-antenna is small. Moreover, our proposed beamforming design outperforms the existing beamforming strategies, and FD mode works better than HD mode in low signal-to-noise ratio region.Comment: 7 pages, 4 figures, accepted by Globecom 201

    Spectral Efficiency Scaling Laws in Dense Random Wireless Networks with Multiple Receive Antennas

    Full text link
    This paper considers large random wireless networks where transmit-and-receive node pairs communicate within a certain range while sharing a common spectrum. By modeling the spatial locations of nodes based on stochastic geometry, analytical expressions for the ergodic spectral efficiency of a typical node pair are derived as a function of the channel state information available at a receiver (CSIR) in terms of relevant system parameters: the density of communication links, the number of receive antennas, the path loss exponent, and the operating signal-to-noise ratio. One key finding is that when the receiver only exploits CSIR for the direct link, the sum of spectral efficiencies linearly improves as the density increases, when the number of receive antennas increases as a certain super-linear function of the density. When each receiver exploits CSIR for a set of dominant interfering links in addition to the direct link, the sum of spectral efficiencies linearly increases with both the density and the path loss exponent if the number of antennas is a linear function of the density. This observation demonstrates that having CSIR for dominant interfering links provides a multiplicative gain in the scaling law. It is also shown that this linear scaling holds for direct CSIR when incorporating the effect of the receive antenna correlation, provided that the rank of the spatial correlation matrix scales super-linearly with the density. Simulation results back scaling laws derived from stochastic geometry.Comment: Submitte

    Performance of Optimum Combining in a Poisson Field of Interferers and Rayleigh Fading Channels

    Full text link
    This paper studies the performance of antenna array processing in distributed multiple access networks without power control. The interference is represented as a Poisson point process. Desired and interfering signals are subject to both path-loss fading (with an exponent greater than 2) and to independent Rayleigh fading. Using these assumptions, we derive the exact closed form expression for the cumulative distribution function of the output signal-to-interference-plus-noise ratio when optimum combining is applied. This results in a pertinent measure of the network performance in terms of the outage probability, which in turn provides insights into the network capacity gain that could be achieved with antenna array processing. We present and discuss examples of applications, as well as some numerical results.Comment: Submitted to IEEE Trans. on Wireless Communication (Jan. 2009
    • …
    corecore