17,450 research outputs found

    Fitness sharing and niching methods revisited

    Get PDF
    Interest in multimodal optimization function is expanding rapidly since real-world optimization problems often require the location of multiple optima in the search space. In this context, fitness sharing has been used widely to maintain population diversity and permit the investigation of many peaks in the feasible domain. This paper reviews various strategies of sharing and proposes new recombination schemes to improve its efficiency. Some empirical results are presented for high and a limited number of fitness function evaluations. Finally, the study compares the sharing method with other niching techniques

    K-Implementation

    Full text link
    This paper discusses an interested party who wishes to influence the behavior of agents in a game (multi-agent interaction), which is not under his control. The interested party cannot design a new game, cannot enforce agents' behavior, cannot enforce payments by the agents, and cannot prohibit strategies available to the agents. However, he can influence the outcome of the game by committing to non-negative monetary transfers for the different strategy profiles that may be selected by the agents. The interested party assumes that agents are rational in the commonly agreed sense that they do not use dominated strategies. Hence, a certain subset of outcomes is implemented in a given game if by adding non-negative payments, rational players will necessarily produce an outcome in this subset. Obviously, by making sufficiently big payments one can implement any desirable outcome. The question is what is the cost of implementation? In this paper we introduce the notion of k-implementation of a desired set of strategy profiles, where k stands for the amount of payment that need to be actually made in order to implement desirable outcomes. A major point in k-implementation is that monetary offers need not necessarily materialize when following desired behaviors. We define and study k-implementation in the contexts of games with complete and incomplete information. In the latter case we mainly focus on the VCG games. Our setting is later extended to deal with mixed strategies using correlation devices. Together, the paper introduces and studies the implementation of desirable outcomes by a reliable party who cannot modify game rules (i.e. provide protocols), complementing previous work in mechanism design, while making it more applicable to many realistic CS settings

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    Pipelining the Fast Multipole Method over a Runtime System

    Get PDF
    Fast Multipole Methods (FMM) are a fundamental operation for the simulation of many physical problems. The high performance design of such methods usually requires to carefully tune the algorithm for both the targeted physics and the hardware. In this paper, we propose a new approach that achieves high performance across architectures. Our method consists of expressing the FMM algorithm as a task flow and employing a state-of-the-art runtime system, StarPU, in order to process the tasks on the different processing units. We carefully design the task flow, the mathematical operators, their Central Processing Unit (CPU) and Graphics Processing Unit (GPU) implementations, as well as scheduling schemes. We compute potentials and forces of 200 million particles in 48.7 seconds on a homogeneous 160 cores SGI Altix UV 100 and of 38 million particles in 13.34 seconds on a heterogeneous 12 cores Intel Nehalem processor enhanced with 3 Nvidia M2090 Fermi GPUs.Comment: No. RR-7981 (2012

    Applying engineering feedback analysis tools to climate dynamics

    Get PDF
    The application of feedback analysis tools from engineering control theory to problems in climate dynamics is discussed through two examples. First, the feedback coupling between the thermohaline circulation and wind-driven circulation in the North Atlantic Ocean is analyzed with a relatively simple model, in order to better understand the coupled system dynamics. The simulation behavior is compared with analysis using root locus (in the linear regime) and describing functions (to predict limit cycle amplitude). The second example does not directly involve feedback, but rather uses simulation-based identification of low-order dynamics to understand parameter sensitivity in a model of El Nino/Southern Oscillation dynamics. The eigenvalue and eigenvector sensitivity can be used both to better understand physics and to tune more complex models. Finally, additional applications are discussed where control tools may be relevant to understand existing feedbacks in the climate system, or even to introduce new ones
    • 

    corecore