7 research outputs found

    Associative storage modification machines

    Get PDF

    Behavioural Theory of Reflective Algorithms I: Reflective Sequential Algorithms

    Full text link
    We develop a behavioural theory of reflective sequential algorithms (RSAs), i.e. sequential algorithms that can modify their own behaviour. The theory comprises a set of language-independent postulates defining the class of RSAs, an abstract machine model, and the proof that all RSAs are captured by this machine model. As in Gurevich's behavioural theory for sequential algorithms RSAs are sequential-time, bounded parallel algorithms, where the bound depends on the algorithm only and not on the input. Different from the class of sequential algorithms every state of an RSA includes a representation of the algorithm in that state, thus enabling linguistic reflection. Bounded exploration is preserved using terms as values. The model of reflective sequential abstract state machines (rsASMs) extends sequential ASMs using extended states that include an updatable representation of the main ASM rule to be executed by the machine in that state. Updates to the representation of ASM signatures and rules are realised by means of a sophisticated tree algebra.Comment: 32 page

    A Behavioural Theory of Recursive Algorithms

    Full text link
    "What is an algorithm?" is a fundamental question of computer science. Gurevich's behavioural theory of sequential algorithms (aka the sequential ASM thesis) gives a partial answer by defining (non-deterministic) sequential algorithms axiomatically, without referring to a particular machine model or programming language, and showing that they are captured by (non-deterministic) sequential Abstract State Machines (nd-seq ASMs). Moschovakis pointed out that recursive algorithms such as mergesort are not covered by this theory. In this article we propose an axiomatic definition of the notion of sequential recursive algorithm which extends Gurevich's axioms for sequential algorithms by a Recursion Postulate and allows us to prove that sequential recursive algorithms are captured by recursive Abstract State Machines, an extension of nd-seq ASMs by a CALL rule. Applying this recursive ASM thesis yields a characterization of sequential recursive algorithms as finitely composed concurrent algorithms all of whose concurrent runs are partial-order runs.Comment: 34 page

    On the parallel computation thesis

    No full text
    corecore