222 research outputs found

    On Caching with More Users than Files

    Full text link
    Caching appears to be an efficient way to reduce peak hour network traffic congestion by storing some content at the user's cache without knowledge of later demands. Recently, Maddah-Ali and Niesen proposed a two-phase, placement and delivery phase, coded caching strategy for centralized systems (where coordination among users is possible in the placement phase), and for decentralized systems. This paper investigates the same setup under the further assumption that the number of users is larger than the number of files. By using the same uncoded placement strategy of Maddah-Ali and Niesen, a novel coded delivery strategy is proposed to profit from the multicasting opportunities that arise because a file may be demanded by multiple users. The proposed delivery method is proved to be optimal under the constraint of uncoded placement for centralized systems with two files, moreover it is shown to outperform known caching strategies for both centralized and decentralized systems.Comment: 6 pages, 3 figures, submitted to ISIT 201

    Fundamental Limits of Caching

    Full text link
    Caching is a technique to reduce peak traffic rates by prefetching popular content into memories at the end users. Conventionally, these memories are used to deliver requested content in part from a locally cached copy rather than through the network. The gain offered by this approach, which we term local caching gain, depends on the local cache size (i.e, the memory available at each individual user). In this paper, we introduce and exploit a second, global, caching gain not utilized by conventional caching schemes. This gain depends on the aggregate global cache size (i.e., the cumulative memory available at all users), even though there is no cooperation among the users. To evaluate and isolate these two gains, we introduce an information-theoretic formulation of the caching problem focusing on its basic structure. For this setting, we propose a novel coded caching scheme that exploits both local and global caching gains, leading to a multiplicative improvement in the peak rate compared to previously known schemes. In particular, the improvement can be on the order of the number of users in the network. Moreover, we argue that the performance of the proposed scheme is within a constant factor of the information-theoretic optimum for all values of the problem parameters.Comment: To appear in IEEE Transactions on Information Theor

    Broadcast Caching Networks with Two Receivers and Multiple Correlated Sources

    Full text link
    The correlation among the content distributed across a cache-aided broadcast network can be exploited to reduce the delivery load on the shared wireless link. This paper considers a two-user three-file network with correlated content, and studies its fundamental limits for the worst-case demand. A class of achievable schemes based on a two-step source coding approach is proposed. Library files are first compressed using Gray-Wyner source coding, and then cached and delivered using a combination of correlation-unaware cache-aided coded multicast schemes. The second step is interesting in its own right and considers a multiple-request caching problem, whose solution requires coding in the placement phase. A lower bound on the optimal peak rate-memory trade-off is derived, which is used to evaluate the performance of the proposed scheme. It is shown that for symmetric sources the two-step strategy achieves the lower bound for large cache capacities, and it is within half of the joint entropy of two of the sources conditioned on the third source for all other cache sizes.Comment: in Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, November 201

    Caching in Combination Networks: Novel Multicast Message Generation and Delivery by Leveraging the Network Topology

    Full text link
    Maddah-Ali and Niesen's original coded caching scheme for shared-link broadcast networks is now known to be optimal to within a factor two, and has been applied to other types of networks. For practical reasons, this paper considers that a server communicates to cache-aided users through HH intermediate relays. In particular, it focuses on combination networks where each of the K=(Hr)K = \binom{H}{r} users is connected to a distinct rr-subsets of relays. By leveraging the symmetric topology of the network, this paper proposes a novel method to general multicast messages and to deliver them to the users. By numerical evaluations, the proposed scheme is shown to reduce the download time compared to the schemes available in the literature. The idea is then extended to decentralized combination networks, more general relay networks, and combination networks with cache-aided relays and users. Also in these cases the proposed scheme outperforms known ones.Comment: 6 pages, 3 figures, accepted in ICC 2018, correct the typo in (6) of the previous versio
    • …
    corecore