45,171 research outputs found

    On the optimality of the uniform random strategy

    Full text link
    The concept of biased Maker-Breaker games, introduced by Chv\'atal and Erd{\H o}s, is a central topic in the field of positional games, with deep connections to the theory of random structures. For any given hypergraph H{\cal H} the main questions is to determine the smallest bias q(H)q({\cal H}) that allows Breaker to force that Maker ends up with an independent set of H{\cal H}. Here we prove matching general winning criteria for Maker and Breaker when the game hypergraph satisfies a couple of natural `container-type' regularity conditions about the degree of subsets of its vertices. This will enable us to derive a hypergraph generalization of the HH-building games, studied for graphs by Bednarska and {\L}uczak. Furthermore, we investigate the biased version of generalizations of the van der Waerden games introduced by Beck. We refer to these generalizations as Rado games and determine their threshold bias up to constant factors by applying our general criteria. We find it quite remarkable that a purely game theoretic deterministic approach provides the right order of magnitude for such a wide variety of hypergraphs, when the generalizations to hypergraphs in the analogous setup of sparse random discrete structures are usually quite challenging.Comment: 26 page

    Ergodicity, Decisions, and Partial Information

    Full text link
    In the simplest sequential decision problem for an ergodic stochastic process X, at each time n a decision u_n is made as a function of past observations X_0,...,X_{n-1}, and a loss l(u_n,X_n) is incurred. In this setting, it is known that one may choose (under a mild integrability assumption) a decision strategy whose pathwise time-average loss is asymptotically smaller than that of any other strategy. The corresponding problem in the case of partial information proves to be much more delicate, however: if the process X is not observable, but decisions must be based on the observation of a different process Y, the existence of pathwise optimal strategies is not guaranteed. The aim of this paper is to exhibit connections between pathwise optimal strategies and notions from ergodic theory. The sequential decision problem is developed in the general setting of an ergodic dynamical system (\Omega,B,P,T) with partial information Y\subseteq B. The existence of pathwise optimal strategies grounded in two basic properties: the conditional ergodic theory of the dynamical system, and the complexity of the loss function. When the loss function is not too complex, a general sufficient condition for the existence of pathwise optimal strategies is that the dynamical system is a conditional K-automorphism relative to the past observations \bigvee_n T^n Y. If the conditional ergodicity assumption is strengthened, the complexity assumption can be weakened. Several examples demonstrate the interplay between complexity and ergodicity, which does not arise in the case of full information. Our results also yield a decision-theoretic characterization of weak mixing in ergodic theory, and establish pathwise optimality of ergodic nonlinear filters.Comment: 45 page

    Target Assignment in Robotic Networks: Distance Optimality Guarantees and Hierarchical Strategies

    Get PDF
    We study the problem of multi-robot target assignment to minimize the total distance traveled by the robots until they all reach an equal number of static targets. In the first half of the paper, we present a necessary and sufficient condition under which true distance optimality can be achieved for robots with limited communication and target-sensing ranges. Moreover, we provide an explicit, non-asymptotic formula for computing the number of robots needed to achieve distance optimality in terms of the robots' communication and target-sensing ranges with arbitrary guaranteed probabilities. The same bounds are also shown to be asymptotically tight. In the second half of the paper, we present suboptimal strategies for use when the number of robots cannot be chosen freely. Assuming first that all targets are known to all robots, we employ a hierarchical communication model in which robots communicate only with other robots in the same partitioned region. This hierarchical communication model leads to constant approximations of true distance-optimal solutions under mild assumptions. We then revisit the limited communication and sensing models. By combining simple rendezvous-based strategies with a hierarchical communication model, we obtain decentralized hierarchical strategies that achieve constant approximation ratios with respect to true distance optimality. Results of simulation show that the approximation ratio is as low as 1.4

    An ant colony algorithm for the sequential testing problem under precedence constraints.

    Get PDF
    We consider the problem of minimum cost sequential testing of a series (parallel) system under precedence constraints that can be modeled as a nonlinear integer program. We develop and implement an ant colony algorithm for the problem. We demonstrate the performance of this algorithm for special type of instances for which the optimal solutions can be found in polynomial time. In addition, we compare the performance of the algorithm with a special branch and bound algorithm for general instances. The ant colony algorithm is shown to be particularly effective for larger instances of the problem

    Minimax Structured Normal Means Inference

    Full text link
    We provide a unified treatment of a broad class of noisy structure recovery problems, known as structured normal means problems. In this setting, the goal is to identify, from a finite collection of Gaussian distributions with different means, the distribution that produced some observed data. Recent work has studied several special cases including sparse vectors, biclusters, and graph-based structures. We establish nearly matching upper and lower bounds on the minimax probability of error for any structured normal means problem, and we derive an optimality certificate for the maximum likelihood estimator, which can be applied to many instantiations. We also consider an experimental design setting, where we generalize our minimax bounds and derive an algorithm for computing a design strategy with a certain optimality property. We show that our results give tight minimax bounds for many structure recovery problems and consider some consequences for interactive sampling
    corecore