411 research outputs found

    A Comparison of Time-Sharing, DPC, and Beamforming for MIMO Broadcast Channels With Many Users

    Get PDF
    In this letter, we derive the scaling laws of the sum rate for fading multiple-input multiple-output Gaussian broadcast channels using time sharing to the strongest user, dirty-paper coding (DPC), and beamforming, when the number of users (receivers) n is large. Throughout the letter, we assume a fix average transmit power and consider a block-fading Rayleigh channel. First, we show that for a system with M transmit antennas and users equipped with N antennas, the sum rate scales like M log logn N for DPC, and beamforming when M is fixed and for any N (either growing to infinity or not). On the other hand, when both M and N are fixed, the sum rate of time sharing to the strongest user scales like min(M,N)log log n. Therefore, the asymptotic gain of DPC over time sharing for the sum rate is (M/min(M,N)) when M and N are fixed. It is also shown that if M grows as logn, the sum rate of DPC and beamforming will grow linearly in M, but with different constant multiplicative factors. In this region, the sum-rate capacity of time-sharing scales like N log log n

    Linear Precoding in Cooperative MIMO Cellular Networks with Limited Coordination Clusters

    Full text link
    In a cooperative multiple-antenna downlink cellular network, maximization of a concave function of user rates is considered. A new linear precoding technique called soft interference nulling (SIN) is proposed, which performs at least as well as zero-forcing (ZF) beamforming. All base stations share channel state information, but each user's message is only routed to those that participate in the user's coordination cluster. SIN precoding is particularly useful when clusters of limited sizes overlap in the network, in which case traditional techniques such as dirty paper coding or ZF do not directly apply. The SIN precoder is computed by solving a sequence of convex optimization problems. SIN under partial network coordination can outperform ZF under full network coordination at moderate SNRs. Under overlapping coordination clusters, SIN precoding achieves considerably higher throughput compared to myopic ZF, especially when the clusters are large.Comment: 13 pages, 5 figure
    • …
    corecore