4 research outputs found

    Multicluster interleaving on paths and cycles

    Get PDF
    Interleaving codewords is an important method not only for combatting burst errors, but also for distributed data retrieval. This paper introduces the concept of multicluster interleaving (MCI), a generalization of traditional interleaving problems. MCI problems for paths and cycles are studied. The following problem is solved: how to interleave integers on a path or cycle such that any m (m/spl ges/2) nonoverlapping clusters of order 2 in the path or cycle have at least three distinct integers. We then present a scheme using a "hierarchical-chain structure" to solve the following more general problem for paths: how to interleave integers on a path such that any m (m/spl ges/2) nonoverlapping clusters of order L (L/spl ges/2) in the path have at least L+1 distinct integers. It is shown that the scheme solves the second interleaving problem for paths that are asymptotically as long as the longest path on which an MCI exists, and clearly, for shorter paths as well

    Optimal Interleaving on Tori

    Get PDF
    We study t-interleaving on two-dimensional tori, which is defined by the property that any connected subgraph with t or fewer vertices in the torus is labelled by all distinct integers. It has applications in distributed data storage and burst error correction, and is closely related to Lee metric codes. We say that a torus can be perfectly t-interleaved if its t-interleaving number – the minimum number of distinct integers needed to t-interleave the torus – meets the spherepacking lower bound. We prove the necessary and sufficient conditions for tori that can be perfectly t-interleaved, and present efficient perfect t-interleaving constructions. The most important contribution of this paper is to prove that the t-interleaving numbers of tori large enough in both dimensions, which constitute by far the majority of all existing cases, is at most one more than the sphere-packing lower bound, and to present an optimal and efficient t-interleaving scheme for them. Then we prove some bounds on the t-interleaving numbers for other cases, completing a general picture for the t-interleaving problem on 2-dimensional tori

    Optimal Interleaving on Tori

    Get PDF
    This paper studies tt-interleaving on two-dimensional tori. Interleaving has applications in distributed data storage and burst error correction, and is closely related to Lee metric codes. A tt-interleaving of a graph is defined as a vertex coloring in which any connected subgraph of tt or fewer vertices has a distinct color at every vertex. We say that a torus can be perfectly t-interleaved if its t-interleaving number (the minimum number of colors needed for a t-interleaving) meets the sphere-packing lower bound, t2/2\lceil t^2/2 \rceil. We show that a torus is perfectly t-interleavable if and only if its dimensions are both multiples of t2+12\frac{t^2+1}{2} (if t is odd) or t (if t is even). The next natural question is how much bigger the t-interleaving number is for those tori that are not perfectly t-interleavable, and the most important contribution of this paper is to find an optimal interleaving for all sufficiently large tori, proving that when a torus is large enough in both dimensions, its t-interleaving number is at most just one more than the sphere-packing lower bound. We also obtain bounds on t-interleaving numbers for the cases where one or both dimensions are not large, thus completing a general characterization of t-interleaving numbers for two-dimensional tori. Each of our upper bounds is accompanied by an efficient t-interleaving scheme that constructively achieves the bound
    corecore