14,362 research outputs found

    Optimal Uniform Convergence Rates and Asymptotic Normality for Series Estimators Under Weak Dependence and Weak Conditions

    Get PDF
    We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n/logn)p/(2p+d)(n/\log n)^{-p/(2p+d)} of Stone (1982), where dd is the number of regressors and pp is the smoothness of the regression function. The optimal rate is achieved even for heavy-tailed martingale difference errors with finite (2+(d/p))(2+(d/p))th absolute moment for d/p<2d/p<2. We also establish the asymptotic normality of t statistics for possibly nonlinear, irregular functionals of the conditional mean function under weak conditions. The results are proved by deriving a new exponential inequality for sums of weakly dependent random matrices, which is of independent interest.Comment: forthcoming in Journal of Econometric

    Sum-factorization techniques in Isogeometric Analysis

    Full text link
    The fast assembling of stiffness and mass matrices is a key issue in isogeometric analysis, particularly if the spline degree is increased. We present two algorithms based on the idea of sum factorization, one for matrix assembling and one for matrix-free methods, and study the behavior of their computational complexity in terms of the spline order pp. Opposed to the standard approach, these algorithms do not apply the idea element-wise, but globally or on macro-elements. If this approach is applied to Gauss quadrature, the computational complexity grows as pd+2p^{d+2} instead of p2d+1p^{2d+1} as previously achieved.Comment: 34 pages, 8 figure

    A continuous analogue of the tensor-train decomposition

    Full text link
    We develop new approximation algorithms and data structures for representing and computing with multivariate functions using the functional tensor-train (FT), a continuous extension of the tensor-train (TT) decomposition. The FT represents functions using a tensor-train ansatz by replacing the three-dimensional TT cores with univariate matrix-valued functions. The main contribution of this paper is a framework to compute the FT that employs adaptive approximations of univariate fibers, and that is not tied to any tensorized discretization. The algorithm can be coupled with any univariate linear or nonlinear approximation procedure. We demonstrate that this approach can generate multivariate function approximations that are several orders of magnitude more accurate, for the same cost, than those based on the conventional approach of compressing the coefficient tensor of a tensor-product basis. Our approach is in the spirit of other continuous computation packages such as Chebfun, and yields an algorithm which requires the computation of "continuous" matrix factorizations such as the LU and QR decompositions of vector-valued functions. To support these developments, we describe continuous versions of an approximate maximum-volume cross approximation algorithm and of a rounding algorithm that re-approximates an FT by one of lower ranks. We demonstrate that our technique improves accuracy and robustness, compared to TT and quantics-TT approaches with fixed parameterizations, of high-dimensional integration, differentiation, and approximation of functions with local features such as discontinuities and other nonlinearities
    corecore