5 research outputs found

    On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation

    Get PDF
    We investigate the influence of the shape parameter in the meshless Gaussian RBF finite difference method with irregular centres on the quality of the approximation of the Dirichlet problem for the Poisson equation with smooth solution. Numerical experiments show that the optimal shape parameter strongly depends on the problem, but insignificantly on the density of the centres. Therefore, we suggest a multilevel algorithm that effectively finds near-optimal shape parameter, which helps to significantly reduce the error. Comparison to the finite element method and to the generalised finite differences obtained in the flat limits of the Gaussian RBF is provided

    A Meshfree Generalized Finite Difference Method for Surface PDEs

    Full text link
    In this paper, we propose a novel meshfree Generalized Finite Difference Method (GFDM) approach to discretize PDEs defined on manifolds. Derivative approximations for the same are done directly on the tangent space, in a manner that mimics the procedure followed in volume-based meshfree GFDMs. As a result, the proposed method not only does not require a mesh, it also does not require an explicit reconstruction of the manifold. In contrast to existing methods, it avoids the complexities of dealing with a manifold metric, while also avoiding the need to solve a PDE in the embedding space. A major advantage of this method is that all developments in usual volume-based numerical methods can be directly ported over to surfaces using this framework. We propose discretizations of the surface gradient operator, the surface Laplacian and surface Diffusion operators. Possibilities to deal with anisotropic and discontinous surface properties (with large jumps) are also introduced, and a few practical applications are presented
    corecore