3,106 research outputs found

    Numerical Methods for a Nonlinear BVP Arising in Physical Oceanography

    Full text link
    In this paper we report and compare the numerical results for an ocean circulation model obtained by the classical truncated boundary formulation, the free boundary approach and a quasi-uniform grid treatment of the problem. We apply a shooting method to the truncated boundary formulation and finite difference methods to both the free boundary approach and the quasi-uniform grid treatment. Using the shooting method, supplemented by the Newton's iterations, we show that the ocean circulation model cannot be considered as a simple test case. In fact, for this method we are forced to use as initial iterate a value close to the correct missing initial condition in order to be able to get a convergent numerical solution. The reported numerical results allow us to point out how the finite difference method with a quasi-uniform grid is the less demanding approach and that the free boundary approach provides a more reliable formulation than the classical truncated boundary formulation.Comment: 25 pages, 12 figures, 5 table

    Optimal boundary control with critical penalization for a PDE model of fluid-solid interactions

    Full text link
    We study the finite-horizon optimal control problem with quadratic functionals for an established fluid-structure interaction model. The coupled PDE system under investigation comprises a parabolic (the fluid) and a hyperbolic (the solid) dynamics; the coupling occurs at the interface between the regions occupied by the fluid and the solid. We establish several trace regularity results for the fluid component of the system, which are then applied to show well-posedness of the Differential Riccati Equations arising in the optimization problem. This yields the feedback synthesis of the unique optimal control, under a very weak constraint on the observation operator; in particular, the present analysis allows general functionals, such as the integral of the natural energy of the physical system. Furthermore, this work confirms that the theory developed in Acquistapace et al. [Adv. Differential Equations, 2005] -- crucially utilized here -- encompasses widely differing PDE problems, from thermoelastic systems to models of acoustic-structure and, now, fluid-structure interactions.Comment: 22 pages, submitted; v2: misprints corrected, a remark added in section

    Efficient hyperbolic-parabolic models on multi-dimensional unbounded domains using an extended DG approach

    Full text link
    We introduce an extended discontinuous Galerkin discretization of hyperbolic-parabolic problems on multidimensional semi-infinite domains. Building on previous work on the one-dimensional case, we split the strip-shaped computational domain into a bounded region, discretized by means of discontinuous finite elements using Legendre basis functions, and an unbounded subdomain, where scaled Laguerre functions are used as a basis. Numerical fluxes at the interface allow for a seamless coupling of the two regions. The resulting coupling strategy is shown to produce accurate numerical solutions in tests on both linear and non-linear scalar and vectorial model problems. In addition, an efficient absorbing layer can be simulated in the semi-infinite part of the domain in order to damp outgoing signals with negligible spurious reflections at the interface. By tuning the scaling parameter of the Laguerre basis functions, the extended DG scheme simulates transient dynamics over large spatial scales with a substantial reduction in computational cost at a given accuracy level compared to standard single-domain discontinuous finite element techniques.Comment: 28 pages, 13 figure
    • …
    corecore