170 research outputs found

    On the Minimal Pseudo-Codewords of Codes from Finite Geometries

    Full text link
    In order to understand the performance of a code under maximum-likelihood (ML) decoding, it is crucial to know the minimal codewords. In the context of linear programming (LP) decoding, it turns out to be necessary to know the minimal pseudo-codewords. This paper studies the minimal codewords and minimal pseudo-codewords of some families of codes derived from projective and Euclidean planes. Although our numerical results are only for codes of very modest length, they suggest that these code families exhibit an interesting property. Namely, all minimal pseudo-codewords that are not multiples of a minimal codeword have an AWGNC pseudo-weight that is strictly larger than the minimum Hamming weight of the code. This observation has positive consequences not only for LP decoding but also for iterative decoding.Comment: To appear in Proc. 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let Hβˆ—H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code CβŠ₯C^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(Hβˆ—),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201
    • …
    corecore