5,739 research outputs found

    Uncapacitated Flow-based Extended Formulations

    Full text link
    An extended formulation of a polytope is a linear description of this polytope using extra variables besides the variables in which the polytope is defined. The interest of extended formulations is due to the fact that many interesting polytopes have extended formulations with a lot fewer inequalities than any linear description in the original space. This motivates the development of methods for, on the one hand, constructing extended formulations and, on the other hand, proving lower bounds on the sizes of extended formulations. Network flows are a central paradigm in discrete optimization, and are widely used to design extended formulations. We prove exponential lower bounds on the sizes of uncapacitated flow-based extended formulations of several polytopes, such as the (bipartite and non-bipartite) perfect matching polytope and TSP polytope. We also give new examples of flow-based extended formulations, e.g., for 0/1-polytopes defined from regular languages. Finally, we state a few open problems

    Incompatible double posets and double order polytopes

    Full text link
    In 1986 Stanley associated to a poset the order polytope. The close interplay between its combinatorial and geometric properties makes the order polytope an object of tremendous interest. Double posets were introduced in 2011 by Malvenuto and Reutenauer as a generalization of Stanleys labelled posets. A double poset is a finite set equipped with two partial orders. To a double poset Chappell, Friedl and Sanyal (2017) associated the double order polytope. They determined the combinatorial structure for the class of compatible double posets. In this paper we generalize their description to all double posets and we classify the 2-level double order polytopes.Comment: 11 pages, 3 figure

    Sparse sum-of-squares certificates on finite abelian groups

    Full text link
    Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares of functions with Fourier support T. Our combinatorial condition involves constructing a chordal cover of a graph related to G and S (the Cayley graph Cay(G^\hat{G},S)) with maximal cliques related to T. Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G. We apply our general result to two examples. First, in the case where G=Z2nG = \mathbb{Z}_2^n, by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most n/2\lceil n/2 \rceil, establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on ZN\mathbb{Z}_N (when d divides N). By constructing a particular chordal cover of the d'th power of the N-cycle, we prove that any such function is a sum of squares of functions with at most 3dlog(N/d)3d\log(N/d) nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in R2d\mathbb{R}^{2d} with N vertices can be expressed as a projection of a section of the cone of psd matrices of size 3dlog(N/d)3d\log(N/d). Putting N=d2N=d^2 gives a family of polytopes PdR2dP_d \subset \mathbb{R}^{2d} with LP extension complexity xcLP(Pd)=Ω(d2)\text{xc}_{LP}(P_d) = \Omega(d^2) and SDP extension complexity xcPSD(Pd)=O(dlog(d))\text{xc}_{PSD}(P_d) = O(d\log(d)). To the best of our knowledge, this is the first explicit family of polytopes in increasing dimensions where xcPSD(Pd)=o(xcLP(Pd))\text{xc}_{PSD}(P_d) = o(\text{xc}_{LP}(P_d)).Comment: 34 page

    Theta Bodies for Polynomial Ideals

    Full text link
    Inspired by a question of Lov\'asz, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lov\'asz's theta body of the graph. We prove that theta bodies are, up to closure, a version of Lasserre's relaxations for real solutions to ideals, and that they can be computed explicitly using combinatorial moment matrices. Theta bodies provide a new canonical set of semidefinite relaxations for the max cut problem. For vanishing ideals of finite point sets, we give several equivalent characterizations of when the first theta body equals the convex hull of the points. We also determine the structure of the first theta body for all ideals.Comment: 26 pages, 3 figure

    On cardinality constrained cycle and path polytopes

    Full text link
    Given a directed graph D = (N, A) and a sequence of positive integers 1 <= c_1 < c_2 < ... < c_m <= |N|, we consider those path and cycle polytopes that are defined as the convex hulls of simple paths and cycles of D of cardinality c_p for some p, respectively. We present integer characterizations of these polytopes by facet defining linear inequalities for which the separation problem can be solved in polynomial time. These inequalities can simply be transformed into inequalities that characterize the integer points of the undirected counterparts of cardinality constrained path and cycle polytopes. Beyond we investigate some further inequalities, in particular inequalities that are specific to odd/even paths and cycles.Comment: 24 page
    corecore