1,525 research outputs found

    A design oriented study for 3R Orthogonal Manipulators With Geometric Simplifications

    Get PDF
    This paper proposes a method to calculate the largest Regular Dextrous Workspace (RDW) of some types of three-revolute orthogonal manipulators that have at least one of their DH parameters equal to zero. Then a new performance index based on the RDW is introduced, the isocontours of this index are plotted in the parameter space of the interesting types of manipulators and finally an inspection of the domains of the parameter spaces is conducted in order to identify the better manipulator architectures. The RDW is a part of the workspace whose shape is regular (cube, cylinder) and the performances (conditioning index) are bounded inside. The groups of 3R orthogonal manipulators studied have interesting kinematic properties such as, a well-connected workspace that is fully reachable with four inverse kinematic solutions and that does not contain any void. This study is of high interest for the design of alternative manipulator geometries

    Fast Manipulability Maximization Using Continuous-Time Trajectory Optimization

    Full text link
    A significant challenge in manipulation motion planning is to ensure agility in the face of unpredictable changes during task execution. This requires the identification and possible modification of suitable joint-space trajectories, since the joint velocities required to achieve a specific endeffector motion vary with manipulator configuration. For a given manipulator configuration, the joint space-to-task space velocity mapping is characterized by a quantity known as the manipulability index. In contrast to previous control-based approaches, we examine the maximization of manipulability during planning as a way of achieving adaptable and safe joint space-to-task space motion mappings in various scenarios. By representing the manipulator trajectory as a continuous-time Gaussian process (GP), we are able to leverage recent advances in trajectory optimization to maximize the manipulability index during trajectory generation. Moreover, the sparsity of our chosen representation reduces the typically large computational cost associated with maximizing manipulability when additional constraints exist. Results from simulation studies and experiments with a real manipulator demonstrate increases in manipulability, while maintaining smooth trajectories with more dexterous (and therefore more agile) arm configurations.Comment: In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS'19), Macau, China, Nov. 4-8, 201

    Manipulator Performance Measures - A Comprehensive Literature Survey

    Get PDF
    Due to copyright restrictions of the publisher this item is embargoed and access to the file is restricted until a year after the publishing date.The final publication is available at www.springerlink.comPerformance measures are quintessential to the design, synthesis, study and application of robotic manipulators. Numerous performance measures have been defined to study the performance and behavior of manipulators since the early days of robotics; some more widely accepted than others, but their real significance and limitations have not always been well understood. The aim of this survey is to review the definition, classification, scope, and limitations of some of the widely used performance measures. This work provides an extensive bibliography that can be of help to researchers interested in studying and evaluating the performance and behavior of robotic manipulators. Finally, a few recommendations are proposed based on the review so that the most commonly noticed limitations can be avoided when new performance measures are proposed.http://link.springer.com/article/10.1007/s10846-014-0024-y
    corecore