272 research outputs found

    Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

    Get PDF
    We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.Comment: Accepted for Medical Image Analysis (Special Issue on Medical Imaging with Deep Learning). arXiv admin note: substantial text overlap with arXiv:1804.03999, arXiv:1804.0533

    DRINet for medical image segmentation

    Get PDF
    Convolutional neural networks (CNNs) have revolutionized medical image analysis over the past few years. The UNet architecture is one of the most well-known CNN architectures for semantic segmentation and has achieved remarkable successes in many different medical image segmentation applications. The U-Net architecture consists of standard convolution layers, pooling layers, and upsampling layers. These convolution layers learn representative features of input images and construct segmentations based on the features. However, the features learned by standard convolution layers are not distinctive when the differences among different categories are subtle in terms of intensity, location, shape, and size. In this paper, we propose a novel CNN architecture, called Dense-Res-Inception Net (DRINet), which addresses this challenging problem. The proposed DRINet consists of three blocks, namely a convolutional block with dense connections, a deconvolutional block with residual Inception modules, and an unpooling block. Our proposed architecture outperforms the U-Net in three different challenging applications, namely multi-class segmentation of cerebrospinal fluid (CSF) on brain CT images, multi-organ segmentation on abdominal CT images, multi-class brain tumour segmentation on MR images

    PWD-3DNet: A deep learning-based fully-automated segmentation of multiple structures on temporal bone CT scans

    Get PDF
    The temporal bone is a part of the lateral skull surface that contains organs responsible for hearing and balance. Mastering surgery of the temporal bone is challenging because of this complex and microscopic three-dimensional anatomy. Segmentation of intra-temporal anatomy based on computed tomography (CT) images is necessary for applications such as surgical training and rehearsal, amongst others. However, temporal bone segmentation is challenging due to the similar intensities and complicated anatomical relationships among crit- ical structures, undetectable small structures on standard clinical CT, and the amount of time required for manual segmentation. This paper describes a single multi-class deep learning-based pipeline as the first fully automated algorithm for segmenting multiple temporal bone structures from CT volumes, including the sigmoid sinus, facial nerve, inner ear, malleus, incus, stapes, internal carotid artery and internal auditory canal. The proposed fully convolutional network, PWD-3DNet, is a patch-wise densely connected (PWD) three-dimensional (3D) network. The accuracy and speed of the proposed algorithm was shown to surpass current manual and semi-automated segmentation techniques. The experimental results yielded significantly high Dice similar- ity scores and low Hausdorff distances for all temporal bone structures with an average of 86% and 0.755 millimeter (mm), respectively. We illustrated that overlapping in the inference sub-volumes improves the segmentation performance. Moreover, we proposed augmentation layers by using samples with various transformations and image artefacts to increase the robustness of PWD-3DNet against image acquisition protocols, such as smoothing caused by soft tissue scanner settings and larger voxel sizes used for radiation reduction. The proposed algorithm was tested on low-resolution CTs acquired by another center with different scanner parameters than the ones used to create the algorithm and shows potential for application beyond the particular training data used in the study
    corecore