753 research outputs found

    Matroid Bandits: Fast Combinatorial Optimization with Learning

    Full text link
    A matroid is a notion of independence in combinatorial optimization which is closely related to computational efficiency. In particular, it is well known that the maximum of a constrained modular function can be found greedily if and only if the constraints are associated with a matroid. In this paper, we bring together the ideas of bandits and matroids, and propose a new class of combinatorial bandits, matroid bandits. The objective in these problems is to learn how to maximize a modular function on a matroid. This function is stochastic and initially unknown. We propose a practical algorithm for solving our problem, Optimistic Matroid Maximization (OMM); and prove two upper bounds, gap-dependent and gap-free, on its regret. Both bounds are sublinear in time and at most linear in all other quantities of interest. The gap-dependent upper bound is tight and we prove a matching lower bound on a partition matroid bandit. Finally, we evaluate our method on three real-world problems and show that it is practical

    Mechanism Design without Money via Stable Matching

    Full text link
    Mechanism design without money has a rich history in social choice literature. Due to the strong impossibility theorem by Gibbard and Satterthwaite, exploring domains in which there exist dominant strategy mechanisms is one of the central questions in the field. We propose a general framework, called the generalized packing problem (\gpp), to study the mechanism design questions without payment. The \gpp\ possesses a rich structure and comprises a number of well-studied models as special cases, including, e.g., matroid, matching, knapsack, independent set, and the generalized assignment problem. We adopt the agenda of approximate mechanism design where the objective is to design a truthful (or strategyproof) mechanism without money that can be implemented in polynomial time and yields a good approximation to the socially optimal solution. We study several special cases of \gpp, and give constant approximation mechanisms for matroid, matching, knapsack, and the generalized assignment problem. Our result for generalized assignment problem solves an open problem proposed in \cite{DG10}. Our main technical contribution is in exploitation of the approaches from stable matching, which is a fundamental solution concept in the context of matching marketplaces, in application to mechanism design. Stable matching, while conceptually simple, provides a set of powerful tools to manage and analyze self-interested behaviors of participating agents. Our mechanism uses a stable matching algorithm as a critical component and adopts other approaches like random sampling and online mechanisms. Our work also enriches the stable matching theory with a new knapsack constrained matching model
    • …
    corecore