4 research outputs found

    Artificial-Noise-Aided Secure Multi-Antenna Transmission with Limited Feedback

    Full text link
    We present an optimized secure multi-antenna transmission approach based on artificial-noise-aided beamforming, with limited feedback from a desired single-antenna receiver. To deal with beamformer quantization errors as well as unknown eavesdropper channel characteristics, our approach is aimed at maximizing throughput under dual performance constraints - a connection outage constraint on the desired communication channel and a secrecy outage constraint to guard against eavesdropping. We propose an adaptive transmission strategy that judiciously selects the wiretap coding parameters, as well as the power allocation between the artificial noise and the information signal. This optimized solution reveals several important differences with respect to solutions designed previously under the assumption of perfect feedback. We also investigate the problem of how to most efficiently utilize the feedback bits. The simulation results indicate that a good design strategy is to use approximately 20% of these bits to quantize the channel gain information, with the remainder to quantize the channel direction, and this allocation is largely insensitive to the secrecy outage constraint imposed. In addition, we find that 8 feedback bits per transmit antenna is sufficient to achieve approximately 90% of the throughput attainable with perfect feedback.Comment: to appear in IEEE Transactions on Wireless Communication

    On–Off-Based Secure Transmission Design With Outdated Channel State Information

    Get PDF
    We design new secure on-off transmission schemes in wiretap channels with outdated channel state information (CSI). In our design we consider not only the outdated CSI from the legitimate receiver but two distinct scenarios, depending on whether or not the outdated CSI from the eavesdropper is known at the transmitter. Under this consideration our schemes exploit the useful knowledge contained in the available outdated CSI, based on which the transmitter decides whether to transmit or not. We derive new closed-form expressions for the transmission probability, the connection outage probability, the secrecy outage probability, and the reliable and secure transmission probability to characterize the achievable performance. Based on these results, we present the optimal solutions that maximize the secrecy throughput under dual connection and secrecy outage constraints. Our analytical and numerical results offer detailed insights into the design of the wiretap coding parameters and the imposed outage constraints. We further show that allowing more freedom on the codeword transmission rate enables a larger feasible region of the dual outage constraints by exploiting the trade-off between reliability and security.ARC Discovery Projects Grant DP15010390

    On the ergodic secrecy rate of multiple-antenna wiretap channels using artificial noise and finite-rate feedback

    No full text
    corecore