4 research outputs found

    Reduced Complexity Super-Trellis Decoding for Convolutionally Encoded Transmission Over ISI-Channels

    Full text link
    In this paper we propose a matched encoding (ME) scheme for convolutionally encoded transmission over intersymbol interference (usually called ISI) channels. A novel trellis description enables to perform equalization and decoding jointly, i.e., enables efficient super-trellis decoding. By means of this matched non-linear trellis description we can significantly reduce the number of states needed for the receiver-side Viterbi algorithm to perform maximum-likelihood sequence estimation. Further complexity reduction is achieved using the concept of reduced-state sequence estimation.Comment: 6 pages, 8 figures, accepted for ICNC'13. (see also: arXiv:1205.7031

    On the equivalence of TCM encoders

    No full text

    On the equivalence of TCM encoders

    No full text
    Optimal trellis-coded modulation (TCM) schemes are obtained by jointly designing the convolutional encoder and the binary labeling of the constellation. Unfortunately this approach is infeasible for large encoder memories or constellation sizes. Traditional TCM designs circumvent this problem by using a labeling that follows the set-partitioning principle and by performing an exhaustive search over the encoders. Therefore, traditional TCM schemes are not necessarily optimal. In this paper, we study binary labelings for TCM and show how they can be grouped into classes, which considerably reduces the search space in a joint design. For the particular case of 8-ary modulation the search space is reduced from 40320 to 240. Using this classification, we formally prove that for any channel it is always possible to design a TCM system based on the binary-reflected Gray code with identical performance to the one proposed by Ungerboeck in 1982. Moreover, the classification is used to tabulate asymptotically optimal TCM schemes
    corecore