1,940 research outputs found

    Endpoint-transparent Multipath Transport with Software-defined Networks

    Full text link
    Multipath forwarding consists of using multiple paths simultaneously to transport data over the network. While most such techniques require endpoint modifications, we investigate how multipath forwarding can be done inside the network, transparently to endpoint hosts. With such a network-centric approach, packet reordering becomes a critical issue as it may cause critical performance degradation. We present a Software Defined Network architecture which automatically sets up multipath forwarding, including solutions for reordering and performance improvement, both at the sending side through multipath scheduling algorithms, and the receiver side, by resequencing out-of-order packets in a dedicated in-network buffer. We implemented a prototype with commonly available technology and evaluated it in both emulated and real networks. Our results show consistent throughput improvements, thanks to the use of aggregated path capacity. We give comparisons to Multipath TCP, where we show our approach can achieve a similar performance while offering the advantage of endpoint transparency

    SDNsec: Forwarding Accountability for the SDN Data Plane

    Full text link
    SDN promises to make networks more flexible, programmable, and easier to manage. Inherent security problems in SDN today, however, pose a threat to the promised benefits. First, the network operator lacks tools to proactively ensure that policies will be followed or to reactively inspect the behavior of the network. Second, the distributed nature of state updates at the data plane leads to inconsistent network behavior during reconfigurations. Third, the large flow space makes the data plane susceptible to state exhaustion attacks. This paper presents SDNsec, an SDN security extension that provides forwarding accountability for the SDN data plane. Forwarding rules are encoded in the packet, ensuring consistent network behavior during reconfigurations and limiting state exhaustion attacks due to table lookups. Symmetric-key cryptography is used to protect the integrity of the forwarding rules and enforce them at each switch. A complementary path validation mechanism allows the controller to reactively examine the actual path taken by the packets. Furthermore, we present mechanisms for secure link-failure recovery and multicast/broadcast forwarding.Comment: 14 page

    Joint Energy Efficient and QoS-aware Path Allocation and VNF Placement for Service Function Chaining

    Full text link
    Service Function Chaining (SFC) allows the forwarding of a traffic flow along a chain of Virtual Network Functions (VNFs, e.g., IDS, firewall, and NAT). Software Defined Networking (SDN) solutions can be used to support SFC reducing the management complexity and the operational costs. One of the most critical issues for the service and network providers is the reduction of energy consumption, which should be achieved without impact to the quality of services. In this paper, we propose a novel resource (re)allocation architecture which enables energy-aware SFC for SDN-based networks. To this end, we model the problems of VNF placement, allocation of VNFs to flows, and flow routing as optimization problems. Thereafter, heuristic algorithms are proposed for the different optimization problems, in order find near-optimal solutions in acceptable times. The performance of the proposed algorithms are numerically evaluated over a real-world topology and various network traffic patterns. The results confirm that the proposed heuristic algorithms provide near optimal solutions while their execution time is applicable for real-life networks.Comment: Extended version of submitted paper - v7 - July 201
    • …
    corecore