2 research outputs found

    Adaptive depletion for improvement of MPEG video compression

    Full text link
    Traditional data compression algorithms for 2D images work using the information theoretic paradigm, attempting to reduce redundant information by as much as possible. However, through the use of a depletion algorithm that takes advantage of characteristics of the human visual system, images can be displayed using only half or a quarter of the original information with no appreciable loss of quality.The characteristics of the human visual system that allows the viewer to perceive a higher rate of information than is actually displayed is known as the beta or picket fence effect. It is called the picket fence effect because its effect is noticeable when a person is travelling along a picket fence. Despite the person not having an unimpeded view of the objects behind the fence at any instant, as the person is moving, the objects behind the picket fence are clearly visible. In fact, in most cases the fence is hardly noticeable at all.The techniques we have developed uses this effect to achieve higher levels of compression than would otherwise be possible. As a fundamental characteristic of the beta effect is the requirement that there is movement of the fence in relation to the object, the beta effect can only be used in image sequences where movement between the depletion pattern and objects within the image can be achieved.As MPEG is the recognised standard by which image sequences are coded, compatibility with MPEG is essential. We have modified our technique such that it performs in conjunction with MPEG, providing further compression over MPEG.<br /

    A Computable Fourier Condition Generating Alias-Free Sampling Lattices

    Get PDF
    We propose a Fourier analytical condition linking alias-free sampling with the Fourier transform of the indicator function defined on the given frequency support. Our discussions center around how to develop practical computation algorithms based on the proposed analytical condition. We address several issues along this line, including the derivation of simple closed-form expressions for the Fourier transforms of the indicator functions defined on arbitrary polygonal and polyhedral domains; a complete and nonredundant enumeration of all quantized sampling lattices via the Hermite normal forms of integer matrices; and a quantitative analysis of the approximation of the original infinite Fourier condition by using finite computations. Combining these results, we propose a computational testing procedure that can efficiently search for the optimal alias-free sampling lattices for a given polygonal or polyhedral shaped frequency domain. Several examples are presented to show the potential of the proposed algorithm in multidimensional filter bank design, as well as in applications involving the design of efficient sampling patterns for multidimensional bandlimited signals
    corecore