935 research outputs found

    Time Delay Estimation from Low Rate Samples: A Union of Subspaces Approach

    Full text link
    Time delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Various approaches have been proposed in the literature to identify time delays introduced by multipath environments. However, these methods either operate on the analog received signal, or require high sampling rates in order to achieve reasonable time resolution. In this paper, our goal is to develop a unified approach to time delay estimation from low rate samples of the output of a multipath channel. Our methods result in perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses. This rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. In addition, our development allows for a variety of different sampling methods. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation methods, we develop necessary and sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate. Our results can be viewed in a broader context, as a sampling theorem for analog signals defined over an infinite union of subspaces

    Signal Recovery in Perturbed Fourier Compressed Sensing

    Full text link
    In many applications in compressed sensing, the measurement matrix is a Fourier matrix, i.e., it measures the Fourier transform of the underlying signal at some specified `base' frequencies {ui}i=1M\{u_i\}_{i=1}^M, where MM is the number of measurements. However due to system calibration errors, the system may measure the Fourier transform at frequencies {ui+δi}i=1M\{u_i + \delta_i\}_{i=1}^M that are different from the base frequencies and where {δi}i=1M\{\delta_i\}_{i=1}^M are unknown. Ignoring perturbations of this nature can lead to major errors in signal recovery. In this paper, we present a simple but effective alternating minimization algorithm to recover the perturbations in the frequencies \emph{in situ} with the signal, which we assume is sparse or compressible in some known basis. In many cases, the perturbations {δi}i=1M\{\delta_i\}_{i=1}^M can be expressed in terms of a small number of unique parameters PMP \ll M. We demonstrate that in such cases, the method leads to excellent quality results that are several times better than baseline algorithms (which are based on existing off-grid methods in the recent literature on direction of arrival (DOA) estimation, modified to suit the computational problem in this paper). Our results are also robust to noise in the measurement values. We also provide theoretical results for (1) the convergence of our algorithm, and (2) the uniqueness of its solution under some restrictions.Comment: New theortical results about uniqueness and convergence now included. More challenging experiments now include
    corecore