129,820 research outputs found

    Low-Complexity Iterative Detection for Orthogonal Time Frequency Space Modulation

    Full text link
    We elaborate on the recently proposed orthogonal time frequency space (OTFS) modulation technique, which provides significant advantages over orthogonal frequency division multiplexing (OFDM) in Doppler channels. We first derive the input--output relation describing OTFS modulation and demodulation (mod/demod) for delay--Doppler channels with arbitrary number of paths, with given delay and Doppler values. We then propose a low-complexity message passing (MP) detection algorithm, which is suitable for large-scale OTFS taking advantage of the inherent channel sparsity. Since the fractional Doppler paths (i.e., not exactly aligned with the Doppler taps) produce the inter Doppler interference (IDI), we adapt the MP detection algorithm to compensate for the effect of IDI in order to further improve performance. Simulations results illustrate the superior performance gains of OTFS over OFDM under various channel conditions.Comment: 6 pages, 7 figure

    The Behaviour of Vertical Bell Laboratories Layered Space-Time Algorithm Combined with Multiuser Detection Schemes in Wireless Communication System

    Get PDF
    This paper provides the performance analysis of multiuser Vertical Bell Laboratories Layered Space-Time (V-BLAST) system receiver structures for Multiple-input Multiple-Output (MIMO) channel at a base station with assumption of perfect channel estimation and perfect timing delay estimation. In MIMO channels the receivers such as decorrelator, Minimum Mean Square Error (MMSE) and Multistage Parallel Interference Cancellation (MPIC) receiver outperform the conventional receiver. Withal, since the multiple antenna interference led to a strong impact on the performance degradation of a multistage interference cancellation receiver, the performance of MPIC receiver was highly degraded based on system loading

    An Interference Cancellation Scheme for TFI-OFDM in Time-Variant Large Delay Spread Channel

    Get PDF
    In the mobile radio environment, signals are usually impaired by fading and multipath delay phenomenon. In such channels, severe fading of the signal amplitude and inter-symbol-interference (ISI) due to the frequency selectivity of the channel cause an unacceptable degradation of error performance. Orthogonal frequency division multiplexing (OFDM) is an efficient scheme to mitigate the effect of multipath channel. Since it eliminates ISI by inserting guard interval (GI) longer than the delay spread of the channel. In general, the GI is usually designed to be longer than the delay spread of the channel, and is decided after channel measurements in the desired implementation scenario. However, the maximum delay spread is longer than GI, the system performance is significantly degraded. The conventional time-frequency interferometry (TFI) for OFDM does not consider timevariant channel with large delay spread. In this paper, we focus on the large delay spread channel and propose the ISI and inter-carrier-interference (ICI) compensation method for TFI-OFDM

    FBMC system: an insight into doubly dispersive channel impact

    Get PDF
    It has been claimed that filter bank multicarrier (FBMC) systems suffer from negligible performance loss caused by moderate dispersive channels in the absence of guard time protection between symbols. However, a theoretical and systematic explanation/analysis for the statement is missing in the literature to date. In this paper, based on one-tap minimum mean square error (MMSE) and zero-forcing (ZF) channel equalizations, the impact of doubly dispersive channel on the performance of FBMC systems is analyzed in terms of mean square error of received symbols. Based on this analytical framework, we prove that the circular convolution property between symbols and the corresponding channel coefficients in the frequency domain holds loosely with a set of inaccuracies. To facilitate analysis, we first model the FBMC system in a vector/matrix form and derive the estimated symbols as a sum of desired signal, noise, intersymbol interference (ISI), intercarrier interference (ICI), interblock interference (IBI), and estimation bias in the MMSE equalizer. Those terms are derived one-by-one and expressed as a function of channel parameters. The numerical results reveal that under harsh channel conditions, e.g., with large Doppler spread or channel delay spread, the FBMC system performance may be severely deteriorated and error floor will occur

    Cramer-Rao Lower Bounds for the Synchronization of UWB Signals

    No full text
    We present Cramér-Rao lower bounds (CRLBs) for the synchronization of UWB signals which should be tight lower bounds for the theoretical performance limits of UWB synchronizers. The CRLBs are investigated for both single-pulse systems and time-hopping systems in AWGN and multipath channels. Insights are given into the relationship between CRLBs for different Gaussian monocycles. An approximation method of the CRLBs is discussed when nuisance parameters exist. CRLBs in multipath channels are studied and formulated for three scenarios depending on the way multipath interference is treated. We find that a larger number of multipaths implies higher CRLBs and inferior performance of the synchronizers, and multipath interference on CRLBs cannot be eliminated completely except in very special cases. As every estimate of time delay could not be perfect, the least influence of the synchronization error on the performance of receivers is quantified

    Low-Complexity Hybrid Beamforming for Massive MIMO Systems in Frequency-Selective Channels

    Get PDF
    Hybrid beamforming for frequency-selective channels is a challenging problem as the phase shifters provide the same phase shift to all of the subcarriers. The existing approaches solely rely on the channel's frequency response and the hybrid beamformers maximize the average spectral efficiency over the whole frequency band. Compared to state-of-the-art, we show that substantial sum-rate gains can be achieved, both for rich and sparse scattering channels, by jointly exploiting the frequency and time domain characteristics of the massive multiple-input multiple-output (MIMO) channels. In our proposed approach, the radio frequency (RF) beamformer coherently combines the received symbols in the time domain and, thus, it concentrates signal's power on a specific time sample. As a result, the RF beamformer flattens the frequency response of the "effective" transmission channel and reduces its root mean square delay spread. Then, a baseband combiner mitigates the residual interference in the frequency domain. We present the closed-form expressions of the proposed beamformer and its performance by leveraging the favorable propagation condition of massive MIMO channels and we prove that our proposed scheme can achieve the performance of fully-digital zero-forcing when number of employed phase shifter networks is twice the resolvable multipath components in the time domain.Comment: Accepted to IEEE Acces

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10−5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference
    corecore