51 research outputs found

    두 p진 λ°μ‹œλ©”μ΄μ…˜ μˆ˜μ—΄ κ°„μ˜ μƒν˜Έμƒκ΄€λ„

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2017. 2. λ…Έμ’…μ„ .In this dissertation, the cross-correlation between two differently decimated sequences of a pp-ary m-sequence is considered. Two main contributions are as follows. First, for an odd prime pp, n=2mn=2m, and a pp-ary m-sequence of period pnβˆ’1p^n -1, the cross-correlation between two decimated sequences by 22 and dd are investigated. Two cases of dd, d=(pm+1)22d=\frac{(p^m +1)^2}{2} with pm≑1(mod4)p^m \equiv 1 \pmod4 and d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} with odd m/em/e are considered. The value distribution of the cross-correlation function for each case is completely deterimined. Also, by using these decimated sequences, two new families of pp-ary sequences of period pnβˆ’12\frac{p^n -1}{2} with good correlation property are constructed. Second, an upper bound on the magnitude of the cross-correlation function between two decimated sequences of a pp-ary m-sequence is derived. The two decimation factors are 22 and 2(pm+1)2(p^m +1), where pp is an odd prime, n=2mn=2m, and pm≑1(mod4)p^m \equiv 1 \pmod4. In fact, these two sequences corresponds to the sequences used for the construction of pp-ary Kasami sequences decimated by 22. The upper bound is given as 32pm+12\frac{3}{2}p^m + \frac{1}{2}. Also, using this result, an upper bound of the cross-correlation magnitude between a pp-ary m-sequence and its decimated sequence with the decimation factor d=(pm+1)22d=\frac{(p^m +1)^2}{2} is derived.1 Introduction 1 1.1 Background 1 1.2 Overview of This Dissertation 7 2 Preliminaries 9 2.1 Finite Fields 9 2.2 Trace Functions and Sequences 11 2.3 Cross-Correlation Between Two Sequences 13 2.4 Characters and Weils Bound 15 2.5 Trace-Orthogonal Basis 16 2.6 Known Exponential Sums 17 2.7 Cross-Correlation of pp-ary Kasami Sequence Family 18 2.8 Previous Results on the Cross-Correlation for Decimations with gcd⁑(pnβˆ’1,d)=pn/2+12\gcd(p^n -1, d)=\frac{p^{n/2}+1}{2} 20 2.9 Cross-Correlation Between Two Decimated Sequences by 22 and d=4d=4 or pn+12\frac{p^n +1}{2} 23 3 New pp-ary Sequence Families of Period pnβˆ’12\frac{p^n -1}{2} with Good Correlation Property Using Two Decimated Sequences 26 3.1 Cross-Correlation for the Case of d=(pm+1)22d=\frac{(p^m +1)^2}{2} 27 3.2 Cross-Correlation for the Case of d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} 37 3.3 Construction of New Sequence Families 43 4 Upper Bound on the Cross-Correlation Between Two Decimated pp-ary Sequences 52 4.1 Cross-Correlation Between s(2t+i)s(2t+i) and s(2(pm+1)t+j)s(2(p^m +1)t +j) 53 4.2 Cross-Correlation Between s(t)s(t) and s((pm+1)22t)s(\frac{(p^m +1)^2}{2} t) 66 5 Conclusions 69 Bibliography 72 Abstract (In Korean) 80Docto
    • …
    corecore