57 research outputs found

    A new level-dependent coarsegrid correction scheme for indefinite Helmholtz problems

    Full text link
    In this paper we construct and analyse a level-dependent coarsegrid correction scheme for indefinite Helmholtz problems. This adapted multigrid method is capable of solving the Helmholtz equation on the finest grid using a series of multigrid cycles with a grid-dependent complex shift, leading to a stable correction scheme on all levels. It is rigourously shown that the adaptation of the complex shift throughout the multigrid cycle maintains the functionality of the two-grid correction scheme, as no smooth modes are amplified in or added to the error. In addition, a sufficiently smoothing relaxation scheme should be applied to ensure damping of the oscillatory error components. Numerical experiments on various benchmark problems show the method to be competitive with or even outperform the current state-of-the-art multigrid-preconditioned Krylov methods, like e.g. CSL-preconditioned GMRES or BiCGStab.Comment: 21 page

    Towards Accuracy and Scalability: Combining Isogeometric Analysis with Deflation to Obtain Scalable Convergence for the Helmholtz Equation

    Full text link
    Finding fast yet accurate numerical solutions to the Helmholtz equation remains a challenging task. The pollution error (i.e. the discrepancy between the numerical and analytical wave number k) requires the mesh resolution to be kept fine enough to obtain accurate solutions. A recent study showed that the use of Isogeometric Analysis (IgA) for the spatial discretization significantly reduces the pollution error. However, solving the resulting linear systems by means of a direct solver remains computationally expensive when large wave numbers or multiple dimensions are considered. An alternative lies in the use of (preconditioned) Krylov subspace methods. Recently, the use of the exact Complex Shifted Laplacian Preconditioner (CSLP) with a small complex shift has shown to lead to wave number independent convergence while obtaining more accurate numerical solutions using IgA. In this paper, we propose the use of deflation techniques combined with an approximated inverse of the CSLP using a geometric multigrid method. Numerical results obtained for both one- and two-dimensional model problems, including constant and non-constant wave numbers, show scalable convergence with respect to the wave number and approximation order p of the spatial discretization. Furthermore, when kh is kept constant, the proposed approach leads to a significant reduction of the computational time compared to the use of the exact inverse of the CSLP with a small shift

    Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption

    Get PDF
    In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation −Δu−(k2+iε)u=f-\Delta u - (k^2+ {\rm i} \varepsilon)u = f, with absorption parameter ε∈R\varepsilon \in \mathbb{R}. Multigrid approximations of this equation with ε≠0\varepsilon \not= 0 are commonly used as preconditioners for the pure Helmholtz case (ε=0\varepsilon = 0). However a rigorous theory for such (so-called "shifted Laplace") preconditioners, either for the pure Helmholtz equation, or even the absorptive equation (ε≠0\varepsilon \not=0), is still missing. We present a new theory for the absorptive equation that provides rates of convergence for (left- or right-) preconditioned GMRES, via estimates of the norm and field of values of the preconditioned matrix. This theory uses a kk- and ε\varepsilon-explicit coercivity result for the underlying sesquilinear form and shows, for example, that if ∣ε∣∼k2|\varepsilon|\sim k^2, then classical overlapping additive Schwarz will perform optimally for the absorptive problem, provided the subdomain and coarse mesh diameters are carefully chosen. Extensive numerical experiments are given that support the theoretical results. The theory for the absorptive case gives insight into how its domain decomposition approximations perform as preconditioners for the pure Helmholtz case ε=0\varepsilon = 0. At the end of the paper we propose a (scalable) multilevel preconditioner for the pure Helmholtz problem that has an empirical computation time complexity of about O(n4/3)\mathcal{O}(n^{4/3}) for solving finite element systems of size n=O(k3)n=\mathcal{O}(k^3), where we have chosen the mesh diameter h∼k−3/2h \sim k^{-3/2} to avoid the pollution effect. Experiments on problems with h∼k−1h\sim k^{-1}, i.e. a fixed number of grid points per wavelength, are also given

    Contribution to the study of efficient iterative methods for the numerical solution of partial differential equations

    Get PDF
    Multigrid and domain decomposition methods provide efficient algorithms for the numerical solution of partial differential equations arising in the modelling of many applications in Computational Science and Engineering. This manuscript covers certain aspects of modern iterative solution methods for the solution of large-scale problems issued from the discretization of partial differential equations. More specifically, we focus on geometric multigrid methods, non-overlapping substructuring methods and flexible Krylov subspace methods with a particular emphasis on their combination. Firstly, the combination of multigrid and Krylov subspace methods is investigated on a linear partial differential equation modelling wave propagation in heterogeneous media. Secondly, we focus on non-overlapping domain decomposition methods for a specific finite element discretization known as the hp finite element, where unrefinement/refinement is allowed both by decreasing/increasing the step size h or by decreasing/increasing the polynomial degree p of the approximation on each element. Results on condition number bounds for the domain decomposition preconditioned operators are given and illustrated by numerical results on academic problems in two and three dimensions. Thirdly, we review recent advances related to a class of Krylov subspace methods allowing variable preconditioning. We examine in detail flexible Krylov subspace methods including augmentation and/or spectral deflation, where deflation aims at capturing approximate invariant subspace information. We also present flexible Krylov subspace methods for the solution of linear systems with multiple right-hand sides given simultaneously. The efficiency of the numerical methods is demonstrated on challenging applications in seismics requiring the solution of huge linear systems of equations with multiple right-hand sides on parallel distributed memory computers. Finally, we expose current and future prospectives towards the design of efficient algorithms on extreme scale machines for the solution of problems coming from the discretization of partial differential equations
    • …
    corecore