898 research outputs found

    Controllability and observability of grid graphs via reduction and symmetries

    Full text link
    In this paper we investigate the controllability and observability properties of a family of linear dynamical systems, whose structure is induced by the Laplacian of a grid graph. This analysis is motivated by several applications in network control and estimation, quantum computation and discretization of partial differential equations. Specifically, we characterize the structure of the grid eigenvectors by means of suitable decompositions of the graph. For each eigenvalue, based on its multiplicity and on suitable symmetries of the corresponding eigenvectors, we provide necessary and sufficient conditions to characterize all and only the nodes from which the induced dynamical system is controllable (observable). We discuss the proposed criteria and show, through suitable examples, how such criteria reduce the complexity of the controllability (respectively observability) analysis of the grid

    emgr - The Empirical Gramian Framework

    Full text link
    System Gramian matrices are a well-known encoding for properties of input-output systems such as controllability, observability or minimality. These so-called system Gramians were developed in linear system theory for applications such as model order reduction of control systems. Empirical Gramian are an extension to the system Gramians for parametric and nonlinear systems as well as a data-driven method of computation. The empirical Gramian framework - emgr - implements the empirical Gramians in a uniform and configurable manner, with applications such as Gramian-based (nonlinear) model reduction, decentralized control, sensitivity analysis, parameter identification and combined state and parameter reduction

    The Dynamics of Group Codes: Dual Abelian Group Codes and Systems

    Full text link
    Fundamental results concerning the dynamics of abelian group codes (behaviors) and their duals are developed. Duals of sequence spaces over locally compact abelian groups may be defined via Pontryagin duality; dual group codes are orthogonal subgroups of dual sequence spaces. The dual of a complete code or system is finite, and the dual of a Laurent code or system is (anti-)Laurent. If C and C^\perp are dual codes, then the state spaces of C act as the character groups of the state spaces of C^\perp. The controllability properties of C are the observability properties of C^\perp. In particular, C is (strongly) controllable if and only if C^\perp is (strongly) observable, and the controller memory of C is the observer memory of C^\perp. The controller granules of C act as the character groups of the observer granules of C^\perp. Examples of minimal observer-form encoder and syndrome-former constructions are given. Finally, every observer granule of C is an "end-around" controller granule of C.Comment: 30 pages, 11 figures. To appear in IEEE Trans. Inform. Theory, 200

    Strong Structural Controllability of Systems on Colored Graphs

    Get PDF
    This paper deals with structural controllability of leader-follower networks. The system matrix defining the network dynamics is a pattern matrix in which a priori given entries are equal to zero, while the remaining entries take nonzero values. The network is called strongly structurally controllable if for all choices of real values for the nonzero entries in the pattern matrix, the system is controllable in the classical sense. In this paper we introduce a more general notion of strong structural controllability which deals with the situation that given nonzero entries in the system's pattern matrix are constrained to take identical nonzero values. The constraint of identical nonzero entries can be caused by symmetry considerations or physical constraints on the network. The aim of this paper is to establish graph theoretic conditions for this more general property of strong structural controllability.Comment: 13 page
    corecore