32,047 research outputs found

    Constructive version of Boolean algebra

    Full text link
    The notion of overlap algebra introduced by G. Sambin provides a constructive version of complete Boolean algebra. Here we first show some properties concerning overlap algebras: we prove that the notion of overlap morphism corresponds classically to that of map preserving arbitrary joins; we provide a description of atomic set-based overlap algebras in the language of formal topology, thus giving a predicative characterization of discrete locales; we show that the power-collection of a set is the free overlap algebra join-generated from the set. Then, we generalize the concept of overlap algebra and overlap morphism in various ways to provide constructive versions of the category of Boolean algebras with maps preserving arbitrary existing joins.Comment: 22 page

    Predicative toposes

    Full text link
    We explain the motivation for looking for a predicative analogue of the notion of a topos and propose two definitions. For both notions of a predicative topos we will present the basic results, providing the groundwork for future work in this area

    A Constructive Framework for Galois Connections

    Full text link
    Abstract interpretation-based static analyses rely on abstract domains of program properties, such as intervals or congruences for integer variables. Galois connections (GCs) between posets provide the most widespread and useful formal tool for mathematically specifying abstract domains. Recently, Darais and Van Horn [2016] put forward a notion of constructive Galois connection for unordered sets (rather than posets), which allows to define abstract domains in a so-called mechanized and calculational proof style and therefore enables the use of proof assistants like Coq and Agda for automatically extracting verified algorithms of static analysis. We show here that constructive GCs are isomorphic, in a precise and comprehensive meaning including sound abstract functions, to so-called partitioning GCs--an already known class of GCs which allows to cast standard set partitions as an abstract domain. Darais and Van Horn [2016] also provide a notion of constructive GC for posets, which we prove to be isomorphic to plain GCs and therefore lose their constructive attribute. Drawing on these findings, we put forward and advocate the use of purely partitioning GCs, a novel class of constructive abstract domains for a mechanized approach to abstract interpretation. We show that this class of abstract domains allows us to represent a set partition with more flexibility while retaining a constructive approach to Galois connections

    Positivity relations on a locale

    Get PDF
    This paper analyses the notion of a positivity relationof Formal Topology from the point of view of the theory of Locales. It is shown that a positivity relation on a locale corresponds to a suitable class of points of its lower powerlocale. In particular, closed subtopologies associated to the positivity relation correspond to overt (that is, with open domain) weakly closed sublocales. Finally, some connection is revealed between positivity relations and localic suplattices (these are algebras for the powerlocale monad)

    Overlap Algebras: a Constructive Look at Complete Boolean Algebras

    Get PDF
    The notion of a complete Boolean algebra, although completely legitimate in constructive mathematics, fails to capture some natural structures such as the lattice of subsets of a given set. Sambin's notion of an overlap algebra, although classically equivalent to that of a complete Boolean algebra, has powersets and other natural structures as instances. In this paper we study the category of overlap algebras as an extension of the category of sets and relations, and we establish some basic facts about mono-epi-isomorphisms and (co)limits; here a morphism is a symmetrizable function (with classical logic this is just a function which preserves joins). Then we specialize to the case of morphisms which preserve also finite meets: classically, this is the usual category of complete Boolean algebras. Finally, we connect overlap algebras with locales, and their morphisms with open maps between locales, thus obtaining constructive versions of some results about Boolean locales.Comment: Postproceedings of CCC2018: Continuity, Computability, Constructivity. Faro, Portugal, 24-28 Sep 201

    The principle of pointfree continuity

    Full text link
    In the setting of constructive pointfree topology, we introduce a notion of continuous operation between pointfree topologies and the corresponding principle of pointfree continuity. An operation between points of pointfree topologies is continuous if it is induced by a relation between the bases of the topologies; this gives a rigorous condition for Brouwer's continuity principle to hold. The principle of pointfree continuity for pointfree topologies S\mathcal{S} and T\mathcal{T} says that any relation which induces a continuous operation between points is a morphism from S\mathcal{S} to T\mathcal{T}. The principle holds under the assumption of bi-spatiality of S\mathcal{S}. When S\mathcal{S} is the formal Baire space or the formal unit interval and T\mathcal{T} is the formal topology of natural numbers, the principle is equivalent to spatiality of the formal Baire space and formal unit interval, respectively. Some of the well-known connections between spatiality, bar induction, and compactness of the unit interval are recast in terms of our principle of continuity. We adopt the Minimalist Foundation as our constructive foundation, and positive topology as the notion of pointfree topology. This allows us to distinguish ideal objects from constructive ones, and in particular, to interpret choice sequences as points of the formal Baire space
    • …
    corecore