15,756 research outputs found

    On the cycle structure of permutation polynomials

    Get PDF
    L. Carlitz observed in 1953 that for any a € F*q, the transposition (0 a) can be represented by the polynomial Pa(x) = -a[2](((x - a)[q-2] + a-[1])[q-2] - a)[q-2] which shows that the group of permutation polynomials over Fq is generated by the linear polynomials ax + b, a, b € Fq, a≠0, and x[q-2]. Therefore any permutation polynomial over Fq can be represented as Pn = (...((a[0]x + a[1])[q-2] +a[2]) [q-2] ... + a[n])[q-2] + a[n+1], for some n ≥ 0. In this thesis we study the cycle structure of permutation polynomials Pn, and we count the permutations Pn, n ≤ 3, with a full cycle. We present some constructions of permutations of the form Pn with a full cycle for arbitrary n. These constructions are based on the so called binary symplectic matrices. The use of generalized Fibonacci sequences over Fq enables us to investigate a particular subgroup of Sq, the group of permutations on Fq. In the last chapter we present results on this special group of permutations

    Constructions of Snake-in-the-Box Codes for Rank Modulation

    Full text link
    Snake-in-the-box code is a Gray code which is capable of detecting a single error. Gray codes are important in the context of the rank modulation scheme which was suggested recently for representing information in flash memories. For a Gray code in this scheme the codewords are permutations, two consecutive codewords are obtained by using the "push-to-the-top" operation, and the distance measure is defined on permutations. In this paper the Kendall's τ\tau-metric is used as the distance measure. We present a general method for constructing such Gray codes. We apply the method recursively to obtain a snake of length M2n+1=((2n+1)(2n)1)M2n1M_{2n+1}=((2n+1)(2n)-1)M_{2n-1} for permutations of S2n+1S_{2n+1}, from a snake of length M2n1M_{2n-1} for permutations of~S2n1S_{2n-1}. Thus, we have limnM2n+1S2n+10.4338\lim\limits_{n\to \infty} \frac{M_{2n+1}}{S_{2n+1}}\approx 0.4338, improving on the previous known ratio of limn1πn\lim\limits_{n\to \infty} \frac{1}{\sqrt{\pi n}}. By using the general method we also present a direct construction. This direct construction is based on necklaces and it might yield snakes of length (2n+1)!22n+1\frac{(2n+1)!}{2} -2n+1 for permutations of S2n+1S_{2n+1}. The direct construction was applied successfully for S7S_7 and S9S_9, and hence limnM2n+1S2n+10.4743\lim\limits_{n\to \infty} \frac{M_{2n+1}}{S_{2n+1}}\approx 0.4743.Comment: IEEE Transactions on Information Theor
    corecore