14,587 research outputs found

    Nonparametric Bayes modeling of count processes

    Get PDF
    Data on count processes arise in a variety of applications, including longitudinal, spatial and imaging studies measuring count responses. The literature on statistical models for dependent count data is dominated by models built from hierarchical Poisson components. The Poisson assumption is not warranted in many applications, and hierarchical Poisson models make restrictive assumptions about over-dispersion in marginal distributions. This article proposes a class of nonparametric Bayes count process models, which are constructed through rounding real-valued underlying processes. The proposed class of models accommodates applications in which one observes separate count-valued functional data for each subject under study. Theoretical results on large support and posterior consistency are established, and computational algorithms are developed using Markov chain Monte Carlo. The methods are evaluated via simulation studies and illustrated through application to longitudinal tumor counts and asthma inhaler usage

    Hybrid approximate message passing

    Full text link
    Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research

    An Extension of Generalized Linear Models to Finite Mixture Outcome Distributions

    Full text link
    Finite mixture distributions arise in sampling a heterogeneous population. Data drawn from such a population will exhibit extra variability relative to any single subpopulation. Statistical models based on finite mixtures can assist in the analysis of categorical and count outcomes when standard generalized linear models (GLMs) cannot adequately account for variability observed in the data. We propose an extension of GLM where the response is assumed to follow a finite mixture distribution, while the regression of interest is linked to the mixture's mean. This approach may be preferred over a finite mixture of regressions when the population mean is the quantity of interest; here, only a single regression function must be specified and interpreted in the analysis. A technical challenge is that the mean of a finite mixture is a composite parameter which does not appear explicitly in the density. The proposed model is completely likelihood-based and maintains the link to the regression through a certain random effects structure. We consider typical GLM cases where means are either real-valued, constrained to be positive, or constrained to be on the unit interval. The resulting model is applied to two example datasets through a Bayesian analysis: one with success/failure outcomes and one with count outcomes. Supporting the extra variation is seen to improve residual plots and to appropriately widen prediction intervals

    Stochastic Approximation with Averaging Innovation Applied to Finance

    Get PDF
    The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic approximation when the "innovations" satisfy some "light" averaging properties in the presence of a pathwise Lyapunov function. These averaging assumptions allow us to unify apparently remote frameworks where the innovations are simulated (possibly deterministic like in Quasi-Monte Carlo simulation) or exogenous (like market data) with ergodic properties. We propose several fields of applications and illustrate our results on five examples mainly motivated by Finance

    Concentration of weakly dependent Banach-valued sums and applications to statistical learning methods

    Full text link
    We obtain a Bernstein-type inequality for sums of Banach-valued random variables satisfying a weak dependence assumption of general type and under certain smoothness assumptions of the underlying Banach norm. We use this inequality in order to investigate in the asymptotical regime the error upper bounds for the broad family of spectral regularization methods for reproducing kernel decision rules, when trained on a sample coming from a τ−\tau-mixing process.Comment: 39 page
    • …
    corecore