11,157 research outputs found

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dnm(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k3k \geq 3, deciding whether src(G)k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϵpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and ϵ>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    On rr-Guarding Thin Orthogonal Polygons

    Get PDF
    Guarding a polygon with few guards is an old and well-studied problem in computational geometry. Here we consider the following variant: We assume that the polygon is orthogonal and thin in some sense, and we consider a point pp to guard a point qq if and only if the minimum axis-aligned rectangle spanned by pp and qq is inside the polygon. A simple proof shows that this problem is NP-hard on orthogonal polygons with holes, even if the polygon is thin. If there are no holes, then a thin polygon becomes a tree polygon in the sense that the so-called dual graph of the polygon is a tree. It was known that finding the minimum set of rr-guards is polynomial for tree polygons, but the run-time was O~(n17)\tilde{O}(n^{17}). We show here that with a different approach the running time becomes linear, answering a question posed by Biedl et al. (SoCG 2011). Furthermore, the approach is much more general, allowing to specify subsets of points to guard and guards to use, and it generalizes to polygons with hh holes or thickness KK, becoming fixed-parameter tractable in h+Kh+K.Comment: 18 page

    Centroidal localization game

    Get PDF
    One important problem in a network is to locate an (invisible) moving entity by using distance-detectors placed at strategical locations. For instance, the metric dimension of a graph GG is the minimum number kk of detectors placed in some vertices {v1,,vk}\{v_1,\cdots,v_k\} such that the vector (d1,,dk)(d_1,\cdots,d_k) of the distances d(vi,r)d(v_i,r) between the detectors and the entity's location rr allows to uniquely determine rV(G)r \in V(G). In a more realistic setting, instead of getting the exact distance information, given devices placed in {v1,,vk}\{v_1,\cdots,v_k\}, we get only relative distances between the entity's location rr and the devices (for every 1i,jk1\leq i,j\leq k, it is provided whether d(vi,r)>d(v_i,r) >, <<, or == to d(vj,r)d(v_j,r)). The centroidal dimension of a graph GG is the minimum number of devices required to locate the entity in this setting. We consider the natural generalization of the latter problem, where vertices may be probed sequentially until the moving entity is located. At every turn, a set {v1,,vk}\{v_1,\cdots,v_k\} of vertices is probed and then the relative distances between the vertices viv_i and the current location rr of the entity are given. If not located, the moving entity may move along one edge. Let ζ(G)\zeta^* (G) be the minimum kk such that the entity is eventually located, whatever it does, in the graph GG. We prove that ζ(T)2\zeta^* (T)\leq 2 for every tree TT and give an upper bound on ζ(GH)\zeta^*(G\square H) in cartesian product of graphs GG and HH. Our main result is that ζ(G)3\zeta^* (G)\leq 3 for any outerplanar graph GG. We then prove that ζ(G)\zeta^* (G) is bounded by the pathwidth of GG plus 1 and that the optimization problem of determining ζ(G)\zeta^* (G) is NP-hard in general graphs. Finally, we show that approximating (up to any constant distance) the entity's location in the Euclidean plane requires at most two vertices per turn
    corecore