35 research outputs found

    Self-Organized Criticality as a Neurodynamical Correlate of Consciousness: A neurophysiological approach to measure states of consciousness based on EEG-complexity features

    Get PDF
    Background and Objectives This thesis was based on the hypothesis that the physics-derived theoretical framework of self-organized criticality can be applied to the neuronal dynamics of the human brain. From a consciousness science perspective, this is especially appealing as critical brain dynamics imply a vicinity a phase transition, which is associated with optimized information processing functions as well as the largest repertoire of configurations that a system explores throughout its temporal evolution. Hence, self-organised criticality could serve as a neurodynamical correlate for consciousness, which provides the possibility of deriving empirically testable neurophysiological indices suitable to characterise and quantify states of consciousness. The purpose of this work was to experimentally examine the feasibility of the self-organized criticality theory as a correlate for states of consciousness. Therefore, it was aimed at answering the following research questions based on the analysis of three 64 channel EEG datasets: (i) Can signatures of self-organized criticality be found on the level of the EEG in terms of scale-free distribution of neuronal avalanches and the presence of long-range temporal correlations (LRTC) in neuronal oscillations? (ii) Are criticality features suitable to differentiate state of consciousness in the spectrum of wakefulness? (iii) Can the neuronal dynamics be shifted towards the critical point of a phase transition associated with optimized information processing function by mind-body interventions? (iv) Can an explicit relationship to other nonlinear complexity features and power spectral density parameter be identified? (v) Do EEG-based criticality features reflect individual temperament traits? Material and Methods (1): Re-analysis: Thirty participants highly proficient in meditation (mean age 47 years, 11 females/19 males, meditation experience of at least 5 years practice or more than 1000 h of total meditation time) were measured with 64-channel EEG during one session consisting of a task-free baseline resting, a reading condition and three meditation conditions, namely thoughtless emptiness, presence monitoring and focused attention. (2): 64-channel EEG was recorded from 34 participants (mean age 36.0 ±13.4 years, 24 females/ 10 males) before, during and after a professional singing bowl massage. Further, psychometric data was assessed including absorption capacity defined as the individual’s capacity for engaging attentional resources in sensory and imaginative experiences measured by the Tellegen-Absorption Scale (TAS-D), subjective changes in in body sensation, emotional state, and mental state (CSP-14) as well as the phenomenology of consciousness (PCI-K). (3): Electrophysiological data (64 channels of EEG, EOG, ECG, skin conductance, and respiration) was recorded from 116 participants (mean age 40.0 ±13.4 years, 83 females/ 33 males) – in collaboration with the Institute of Psychology, Bundeswehr University Munich - during a task-free baseline resting state. The individual level of sensory processing sensitivity was assessed using the High Sensitive Person Scale (HSPS-G). The datasets were analysed applying analytical tools from self-organized criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), nonlinear complexity algorithms (multiscale entropy, Higuchi’s fractal dimension) and power spectral density. In study 1 and 2, task conditions were contrasted, and effect sizes were compared using a paired two-tailed t-test calculated across participants, and features. T-values were corrected for multiple testing using false discovery rate. To calculate correlations between the EEG features, Spearman’s rank correlation was applied after determining that the distribution was not appropriate for parametric testing by the Shapiro-Wilk test. In addition, in study 1, a discrimination analysis was carried out to determine the classification performance of the EEG features. Here, partial least squares regression and receiver operating characteristics analysis was applied. To determine whether the EEG features reflect individual temperament traits, the individual level of absorption capacity (study 2) and sensory processing sensitivity (study 3) was correlated with the EEG features using Spearman’s rank correlation. Results Signatures of self-organized criticality in the form of scale-free distribution of neuronal avalanches and long-range temporal correlations (LRTCs) in the amplitude of neural oscillations were observed in three distinct EEG-datasets. EEG criticality as well as complexity features were suitable to characterise distinct states of consciousness. In study 1, compared to the task-free resting condition, all three meditative states revealed significantly reduced long-range temporal correlation with moderate effect sizes (presence monitoring: d= -0.49, p<.001; thoughtless emptiness: d= -0.37, p<.001; and focused attention: d= -0.28, p=.003). The critical exponent was suitable to differentiate between focused attention and presence monitoring (d= -0.32, p=.02). Further, in study 2, the criticality features significantly changed during the course of the experiment, whereby values indicated a shift towards the critical regime during the sound condition. Both analyses of the first and second dataset revealed that the critical exponent was significantly negatively correlated with the sample entropy, the scaling exponent resulting from the DFA denoting the amount of long-range temporal correlations as well as Higuchi’s fractal dimension in each condition, respectively. In addition, the critical scaling exponent was found to be significantly negatively correlated with the trait absorption (Spearman's ρ= -0.39, p= .007), whereas an association between critical dynamics and the level of sensory processing sensitivity could not be verified (study 3). Conclusion The findings of this thesis suggest that neuronal dynamics are governed by the phenomena of self-organized criticality. EEG-based criticality features were shown to be sensitive to detect experimentally induced alterations in the state of consciousness. Further, an explicit relationship with nonlinear measures determining the degree of neuronal complexity was identified. Thus, self-organized criticality seems feasible as a neurodynamical correlate for consciousness with the potential to quantify and characterize states of consciousness. Its agreement with the current most influencing theories in the field of consciousness research is discussed

    Forest landscapes and global change. New frontiers in management, conservation and restoration. Proceedings of the IUFRO Landscape Ecology Working Group International Conference

    Get PDF
    This volume contains the contributions of numerous participants at the IUFRO Landscape Ecology Working Group International Conference, which took place in Bragança, Portugal, from 21 to 24 of September 2010. The conference was dedicated to the theme Forest Landscapes and Global Change - New Frontiers in Management, Conservation and Restoration. The 128 papers included in this book follow the structure and topics of the conference. Sections 1 to 8 include papers relative to presentations in 18 thematic oral and two poster sessions. Section 9 is devoted to a wide-range of landscape ecology fields covered in the 12 symposia of the conference. The Proceedings of the IUFRO Landscape Ecology Working Group International Conference register the growth of scientific interest in forest landscape patterns and processes, and the recognition of the role of landscape ecology in the advancement of science and management, particularly within the context of emerging physical, social and political drivers of change, which influence forest systems and the services they provide. We believe that these papers, together with the presentations and debate which took place during the IUFRO Landscape Ecology Working Group International Conference – Bragança 2010, will definitively contribute to the advancement of landscape ecology and science in general. For their additional effort and commitment, we thank all the participants in the conference for leaving this record of their work, thoughts and science

    Tree diversity and species identity effects on soil fungi, protists and animals are context dependent

    Get PDF
    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se

    Hydroecological monitoring and modelling of river-floodplain restoration in a UK lowland river meadow

    Get PDF
    Channelization and embankment of rivers has led to major ecological degradation of aquatic habitats worldwide. River restoration can be used to restore favourable hydrological conditions for target processes or species. This study is based on rarely available, detailed pre- and post-restoration hydrological data collected from 2007–2010 from a wet grassland meadow in Norfolk, UK. Based on these data, coupled hydrological/hydraulic models were developed of pre-embankment and post-embankment conditions using the MIKE-SHE/MIKE-11 system. Fine-scale plant and chemical sampling was conducted on the floodplain meadow to assess the spatial pattern of plant communities in relation to soil physicochemical conditions. Simulated groundwater levels for a 10-year period were then used to predict changes in plant community composition following embankment-removal. Hydrology was identified as the primary driver of plant community composition, while soil fertility was also important. Embankment removal resulted in widespread floodplain inundation at high river flows and frequent localised flooding at the river edge at lower flows. Subsequently, groundwater levels were higher and subsurface storage was greater. The restoration had a moderate effect on flood-peak attenuation and improved free drainage to the river. Reinstatement of overbank flows did not substantially affect the degree of aeration stress on the meadow, except along the river embankments where sum exceedance values for aeration stress increased from 0 m weeks (dry-grassland) to 7 m weeks (fen). The restored groundwater regime may be suitable for more diverse plant assemblages. However the benefits of flooding (e.g. propagule dispersal, reduced competition) may be over-ridden without management to reduce waterlogging during the growing season, or balance additional nutrient supply from river water. The results from this study suggest that removal of river embankments can increase river-floodplain hydrological connectivity to form a more natural flood-pulsed wetland ecotone, which favours conditions for enhanced flood storage, plant species composition and nutrient retention

    MULTIDIMENSIONALITY IN SENSOMICS: AROUND A CUP OF TEA

    Get PDF
    corecore