4,359 research outputs found

    An analysis of mixed integer linear sets based on lattice point free convex sets

    Full text link
    Split cuts are cutting planes for mixed integer programs whose validity is derived from maximal lattice point free polyhedra of the form S:={x:π0πTxπ0+1}S:=\{x : \pi_0 \leq \pi^T x \leq \pi_0+1 \} called split sets. The set obtained by adding all split cuts is called the split closure, and the split closure is known to be a polyhedron. A split set SS has max-facet-width equal to one in the sense that max{πTx:xS}min{πTx:xS}1\max\{\pi^T x : x \in S \}-\min\{\pi^T x : x \in S \} \leq 1. In this paper we consider using general lattice point free rational polyhedra to derive valid cuts for mixed integer linear sets. We say that lattice point free polyhedra with max-facet-width equal to ww have width size ww. A split cut of width size ww is then a valid inequality whose validity follows from a lattice point free rational polyhedron of width size ww. The ww-th split closure is the set obtained by adding all valid inequalities of width size at most ww. Our main result is a sufficient condition for the addition of a family of rational inequalities to result in a polyhedral relaxation. We then show that a corollary is that the ww-th split closure is a polyhedron. Given this result, a natural question is which width size ww^* is required to design a finite cutting plane proof for the validity of an inequality. Specifically, for this value ww^*, a finite cutting plane proof exists that uses lattice point free rational polyhedra of width size at most ww^*, but no finite cutting plane proof that only uses lattice point free rational polyhedra of width size smaller than ww^*. We characterize ww^* based on the faces of the linear relaxation

    Reverse Chv\'atal-Gomory rank

    Full text link
    We introduce the reverse Chv\'atal-Gomory rank r*(P) of an integral polyhedron P, defined as the supremum of the Chv\'atal-Gomory ranks of all rational polyhedra whose integer hull is P. A well-known example in dimension two shows that there exist integral polytopes P with r*(P) equal to infinity. We provide a geometric characterization of polyhedra with this property in general dimension, and investigate upper bounds on r*(P) when this value is finite.Comment: 21 pages, 4 figure

    Complexity of optimizing over the integers

    Full text link
    In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize notions like "input", "size" and "complexity" in the context of general mathematical optimization, avoiding context dependent definitions which is one of the sources of difference in the treatment of complexity within continuous and discrete optimization. In the second part of the paper, we employ the language developed in the first part to study information theoretic and algorithmic complexity of {\em mixed-integer convex optimization}, which contains as a special case continuous convex optimization on the one hand and pure integer optimization on the other. We strive for the maximum possible generality in our exposition. We hope that this paper contains material that both continuous optimizers and discrete optimizers find new and interesting, even though almost all of the material presented is common knowledge in one or the other community. We see the main merit of this paper as bringing together all of this information under one unifying umbrella with the hope that this will act as yet another catalyst for more interaction across the continuous-discrete divide. In fact, our motivation behind Part I of the paper is to provide a common language for both communities
    corecore