403 research outputs found

    Optimal Order of Decoding for Max-Min Fairness in KK-User Memoryless Interference Channels

    Full text link
    A KK-user memoryless interference channel is considered where each receiver sequentially decodes the data of a subset of transmitters before it decodes the data of the designated transmitter. Therefore, the data rate of each transmitter depends on (i) the subset of receivers which decode the data of that transmitter, (ii) the decoding order, employed at each of these receivers. In this paper, a greedy algorithm is developed to find the users which are decoded at each receiver and the corresponding decoding order such that the minimum rate of the users is maximized. It is proven that the proposed algorithm is optimal.Comment: 11 Pages, Submitted to IEEE International Symposium on Information Theory(ISIT 2007

    Achievable Rates for K-user Gaussian Interference Channels

    Full text link
    The aim of this paper is to study the achievable rates for a KK user Gaussian interference channels for any SNR using a combination of lattice and algebraic codes. Lattice codes are first used to transform the Gaussian interference channel (G-IFC) into a discrete input-output noiseless channel, and subsequently algebraic codes are developed to achieve good rates over this new alphabet. In this context, a quantity called efficiency is introduced which reflects the effectiveness of the algebraic coding strategy. The paper first addresses the problem of finding high efficiency algebraic codes. A combination of these codes with Construction-A lattices is then used to achieve non trivial rates for the original Gaussian interference channel.Comment: IEEE Transactions on Information Theory, 201

    On Discrete Alphabets for the Two-user Gaussian Interference Channel with One Receiver Lacking Knowledge of the Interfering Codebook

    Full text link
    In multi-user information theory it is often assumed that every node in the network possesses all codebooks used in the network. This assumption is however impractical in distributed ad-hoc and cognitive networks. This work considers the two- user Gaussian Interference Channel with one Oblivious Receiver (G-IC-OR), i.e., one receiver lacks knowledge of the interfering cookbook while the other receiver knows both codebooks. We ask whether, and if so how much, the channel capacity of the G-IC- OR is reduced compared to that of the classical G-IC where both receivers know all codebooks. Intuitively, the oblivious receiver should not be able to jointly decode its intended message along with the unintended interfering message whose codebook is unavailable. We demonstrate that in strong and very strong interference, where joint decoding is capacity achieving for the classical G-IC, lack of codebook knowledge does not reduce performance in terms of generalized degrees of freedom (gDoF). Moreover, we show that the sum-capacity of the symmetric G-IC- OR is to within O(log(log(SNR))) of that of the classical G-IC. The key novelty of the proposed achievable scheme is the use of a discrete input alphabet for the non-oblivious transmitter, whose cardinality is appropriately chosen as a function of SNR

    A New Capacity Result for the Z-Gaussian Cognitive Interference Channel

    Full text link
    This work proposes a novel outer bound for the Gaussian cognitive interference channel in strong interference at the primary receiver based on the capacity of a multi-antenna broadcast channel with degraded message set. It then shows that for the Z-channel, i.e., when the secondary receiver experiences no interference and the primary receiver experiences strong interference, the proposed outer bound not only is the tightest among known bounds but is actually achievable for sufficiently strong interference. The latter is a novel capacity result that from numerical evaluations appears to be generalizable to a larger (i.e., non-Z) class of Gaussian channels
    • …
    corecore