26,292 research outputs found

    Quantum Machine Learning in High Energy Physics

    Full text link
    Machine learning has been used in high energy physics since a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are being developed with the aim at exploiting the capacity of the hardware for machine learning applications. An interesting question is whether there are ways to combine quantum machine learning with High Energy Physics. This paper reviews the first generation of ideas that use quantum machine learning on problems in high energy physics and provide an outlook on future applications.Comment: 25 pages, 9 figures, submitted to Machine Learning: Science and Technology, Focus on Machine Learning for Fundamental Physics collectio

    On Distributed Computation in Noisy Random Planar Networks

    Full text link
    We consider distributed computation of functions of distributed data in random planar networks with noisy wireless links. We present a new algorithm for computation of the maximum value which is order optimal in the number of transmissions and computation time.We also adapt the histogram computation algorithm of Ying et al to make the histogram computation time optimal.Comment: 5 pages, 2 figure

    Computing with Coloured Tangles

    Full text link
    We suggest a diagrammatic model of computation based on an axiom of distributivity. A diagram of a decorated coloured tangle, similar to those that appear in low dimensional topology, plays the role of a circuit diagram. Equivalent diagrams represent bisimilar computations. We prove that our model of computation is Turing complete, and that with bounded resources it can moreover decide any language in complexity class IP, sometimes with better performance parameters than corresponding classical protocols.Comment: 36 pages,; Introduction entirely rewritten, Section 4.3 adde
    corecore