7 research outputs found

    On the Capacity of Abelian Group Codes Over Discrete Memoryless Channels

    Full text link
    For most discrete memoryless channels, there does not exist a linear code for the channel which uses all of the channel's input symbols. Therefore, linearity of the code for such channels is a very restrictive condition and there should be a loosening of the algebraic structure of the code to a degree that the code can admit any channel input alphabet. For any channel input alphabet size, there always exists an Abelian group structure defined on the alphabet. We investigate the capacity of Abelian group codes over discrete memoryless channels and provide lower and upper bounds on the capacity

    Multilevel Polarization of Polar Codes Over Arbitrary Discrete Memoryless Channels

    Full text link
    It is shown that polar codes achieve the symmetric capacity of discrete memoryless channels with arbitrary input alphabet sizes. It is shown that in general, channel polarization happens in several, rather than only two levels so that the synthesized channels are either useless, perfect or "partially perfect". Any subset of the channel input alphabet which is closed under addition, induces a coset partition of the alphabet through its shifts. For any such partition of the input alphabet, there exists a corresponding partially perfect channel whose outputs uniquely determine the coset to which the channel input belongs. By a slight modification of the encoding and decoding rules, it is shown that perfect transmission of certain information symbols over partially perfect channels is possible. Our result is general regarding both the cardinality and the algebraic structure of the channel input alphabet; i.e we show that for any channel input alphabet size and any Abelian group structure on the alphabet, polar codes are optimal. It is also shown through an example that polar codes when considered as group/coset codes, do not achieve the capacity achievable using coset codes over arbitrary channels

    Achievable rate region for three user discrete broadcast channel based on coset codes

    Full text link
    We present an achievable rate region for the general three user discrete memoryless broadcast channel, based on nested coset codes. We characterize 3-to-1 discrete broadcast channels, a class of broadcast channels for which the best known coding technique\footnote{We henceforth refer to this as Marton's coding for three user discrete broadcast channel.}, which is obtained by a natural generalization of that proposed by Marton for the general two user discrete broadcast channel, is strictly sub-optimal. In particular, we identify a novel 3-to-1 discrete broadcast channel for which Marton's coding is \textit{analytically} proved to be strictly suboptimal. We present achievable rate regions for the general 3-to-1 discrete broadcast channels, based on nested coset codes, that strictly enlarge Marton's rate region for the aforementioned channel. We generalize this to present achievable rate region for the general three user discrete broadcast channel. Combining together Marton's coding and that proposed herein, we propose the best known coding technique, for a general three user discrete broadcast channel.Comment: A non-additive 3-user discrete broadcast channel is identified for which achievable rate region based on coset codes is analytically proven to be strictly larger than that achievable using unstructured iid codes. This version is submitted to IEEE Transactions on Information Theor

    On the capacity of abelian group codes over discrete memoryless channels

    No full text
    Abstract—For most discrete memoryless channels, there does not exist a linear code which uses all of the channel’s input symbols. Therefore, linearity of the code for such channels is a very restrictive condition and there should be a loosening of the algebraic structure of the code to a degree that the code can admit any channel input alphabet. For any channel input alphabet size, there always exists an Abelian group structure defined on the alphabet. We investigate the capacity of Abelian group codes over discrete memoryless channels and provide lower and upper bounds on the capacity. I

    Group, Lattice and Polar Codes for Multi-terminal Communications.

    Full text link
    We study the performance of algebraic codes for multi-terminal communications. This thesis consists of three parts: In the rst part, we analyze the performance of group codes for communications systems. We observe that although group codes are not optimal for point-to-point scenarios, they can improve the achievable rate region for several multi-terminal communications settings such as the Distributed Source Coding and Interference Channels. The gains in the rates are particularly signicant when the structure of the source/channel is matched to the structure of the underlying group. In the second part, we study the continuous alphabet version of group/linear codes, namely lattice codes. We show that similarly to group codes, lattice codes can improve the achievable rate region for multi-terminal problems. In the third part of the thesis, we present coding schemes based on polar codes to practically achieve the performance limits derived in the two earlier parts. We also present polar coding schemes to achieve the known achievable rate regions for multi-terminal communications problems such as the Distributed Source Coding, the Multiple Description Coding, Broadcast Channels, Interference Channels and Multiple Access Channels.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108876/1/ariaghs_1.pd
    corecore