8,145 research outputs found

    RSSI-Based Self-Localization with Perturbed Anchor Positions

    Full text link
    We consider the problem of self-localization by a resource-constrained mobile node given perturbed anchor position information and distance estimates from the anchor nodes. We consider normally-distributed noise in anchor position information. The distance estimates are based on the log-normal shadowing path-loss model for the RSSI measurements. The available solutions to this problem are based on complex and iterative optimization techniques such as semidefinite programming or second-order cone programming, which are not suitable for resource-constrained environments. In this paper, we propose a closed-form weighted least-squares solution. We calculate the weights by taking into account the statistical properties of the perturbations in both RSSI and anchor position information. We also estimate the bias of the proposed solution and subtract it from the proposed solution. We evaluate the performance of the proposed algorithm considering a set of arbitrary network topologies in comparison to an existing algorithm that is based on a similar approach but only accounts for perturbations in the RSSI measurements. We also compare the results with the corresponding Cramer-Rao lower bound. Our experimental evaluation shows that the proposed algorithm can substantially improve the localization performance in terms of both root mean square error and bias.Comment: Accepted for publication in 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017

    Source localization and denoising: a perspective from the TDOA space

    Full text link
    In this manuscript, we formulate the problem of denoising Time Differences of Arrival (TDOAs) in the TDOA space, i.e. the Euclidean space spanned by TDOA measurements. The method consists of pre-processing the TDOAs with the purpose of reducing the measurement noise. The complete set of TDOAs (i.e., TDOAs computed at all microphone pairs) is known to form a redundant set, which lies on a linear subspace in the TDOA space. Noise, however, prevents TDOAs from lying exactly on this subspace. We therefore show that TDOA denoising can be seen as a projection operation that suppresses the component of the noise that is orthogonal to that linear subspace. We then generalize the projection operator also to the cases where the set of TDOAs is incomplete. We analytically show that this operator improves the localization accuracy, and we further confirm that via simulation.Comment: 25 pages, 9 figure

    Novel passive localization algorithm based on double side matrix-restricted total least squares

    Get PDF
    AbstractIn order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. First, the aforementioned passive localization problem is transferred to the DSMRTLS problem by deriving a multiplicative structure for both the observation matrix and the observation vector. Second, the corresponding optimization problem of the DSMRTLS problem without constraint is derived, which can be approximated as the generalized Rayleigh quotient minimization problem. Then, the localization solution which is globally optimal and asymptotically unbiased can be got by generalized eigenvalue decomposition. Simulation results verify the rationality of the approximation and the good performance of the proposed algorithm compared with several typical algorithms

    Tracking the Tracker from its Passive Sonar ML-PDA Estimates

    Full text link
    Target motion analysis with wideband passive sonar has received much attention. Maximum likelihood probabilistic data-association (ML-PDA) represents an asymptotically efficient estimator for deterministic target motion, and is especially well-suited for low-observable targets; the results presented here apply to situations with higher signal to noise ratio as well, including of course the situation of a deterministic target observed via clean measurements without false alarms or missed detections. Here we study the inverse problem, namely, how to identify the observing platform (following a two-leg motion model) from the results of the target estimation process, i.e. the estimated target state and the Fisher information matrix, quantities we assume an eavesdropper might intercept. We tackle the problem and we present observability properties, with supporting simulation results.Comment: To appear in IEEE Transactions on Aerospace and Electronic System
    • …
    corecore