20,643 research outputs found

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    DropIn: Making Reservoir Computing Neural Networks Robust to Missing Inputs by Dropout

    Full text link
    The paper presents a novel, principled approach to train recurrent neural networks from the Reservoir Computing family that are robust to missing part of the input features at prediction time. By building on the ensembling properties of Dropout regularization, we propose a methodology, named DropIn, which efficiently trains a neural model as a committee machine of subnetworks, each capable of predicting with a subset of the original input features. We discuss the application of the DropIn methodology in the context of Reservoir Computing models and targeting applications characterized by input sources that are unreliable or prone to be disconnected, such as in pervasive wireless sensor networks and ambient intelligence. We provide an experimental assessment using real-world data from such application domains, showing how the Dropin methodology allows to maintain predictive performances comparable to those of a model without missing features, even when 20\%-50\% of the inputs are not available

    Model-driven Scheduling for Distributed Stream Processing Systems

    Full text link
    Distributed Stream Processing frameworks are being commonly used with the evolution of Internet of Things(IoT). These frameworks are designed to adapt to the dynamic input message rate by scaling in/out.Apache Storm, originally developed by Twitter is a widely used stream processing engine while others includes Flink, Spark streaming. For running the streaming applications successfully there is need to know the optimal resource requirement, as over-estimation of resources adds extra cost.So we need some strategy to come up with the optimal resource requirement for a given streaming application. In this article, we propose a model-driven approach for scheduling streaming applications that effectively utilizes a priori knowledge of the applications to provide predictable scheduling behavior. Specifically, we use application performance models to offer reliable estimates of the resource allocation required. Further, this intuition also drives resource mapping, and helps narrow the estimated and actual dataflow performance and resource utilization. Together, this model-driven scheduling approach gives a predictable application performance and resource utilization behavior for executing a given DSPS application at a target input stream rate on distributed resources.Comment: 54 page

    Distributed localized contextual event reasoning under uncertainty

    Get PDF
    We focus on Internet of Things (IoT) environments where sensing and computing devices (nodes) are responsible to observe, reason, report and react to a specific phenomenon. Each node captures context from data streams and reasons on the presence of an event. We propose a distributed predictive analytics scheme for localized context reasoning under uncertainty. Such reasoning is achieved through a contextualized, knowledge-driven clustering process, where the clusters of nodes are formed according to their belief on the presence of the phenomenon. Each cluster enhances its localized opinion about the presence of an event through consensus realized under the principles of Fuzzy Logic (FL). The proposed FLdriven consensus process is further enhanced with semantics adopting Type-2 Fuzzy Sets to handle the uncertainty related to the identification of an event. We provide a comprehensive experimental evaluation and comparison assessment with other schemes over real data and report on the benefits stemmed from its adoption in IoT environments

    Analysing Temporal Relations – Beyond Windows, Frames and Predicates

    Get PDF
    This article proposes an approach to rely on the standard operators of relational algebra (including grouping and ag- gregation) for processing complex event without requiring window specifications. In this way the approach can pro- cess complex event queries of the kind encountered in appli- cations such as emergency management in metro networks. This article presents Temporal Stream Algebra (TSA) which combines the operators of relational algebra with an analy- sis of temporal relations at compile time. This analysis de- termines which relational algebra queries can be evaluated against data streams, i. e. the analysis is able to distinguish valid from invalid stream queries. Furthermore the analysis derives functions similar to the pass, propagation and keep invariants in Tucker's et al. \Exploiting Punctuation Seman- tics in Continuous Data Streams". These functions enable the incremental evaluation of TSA queries, the propagation of punctuations, and garbage collection. The evaluation of TSA queries combines bulk-wise and out-of-order processing which makes it tolerant to workload bursts as they typically occur in emergency management. The approach has been conceived for efficiently processing complex event queries on top of a relational database system. It has been deployed and tested on MonetDB

    Automatically detecting important moments from everyday life using a mobile device

    Get PDF
    This paper proposes a new method to detect important moments in our lives. Our work is motivated by the increase in the quantity of multimedia data, such as videos and photos, which are capturing life experiences into personal archives. Even though such media-rich data suggests visual processing to identify important moments, the oft-mentioned problem of the semantic gap means that users cannot automatically identify or retrieve important moments using visual processing techniques alone. Our approach utilises on-board sensors from mobile devices to automatically identify important moments, as they are happening
    corecore