16,054 research outputs found

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if f∈F[x1,x2,…,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)log⁑ns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2log⁑n)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    New Acceleration of Nearly Optimal Univariate Polynomial Root-findERS

    Full text link
    Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. Two of them are nearly optimal. The first one, proposed in 1995, relies on recursive factorization of a polynomial, is quite involved, and has never been implemented. The second one, proposed in 2016, relies on subdivision iterations, was implemented in 2018, and promises to be practically competitive, although user's current choice for univariate polynomial root-finding is the package MPSolve, proposed in 2000, revised in 2014, and based on Ehrlich's functional iterations. By proposing and incorporating some novel techniques we significantly accelerate both subdivision and Ehrlich's iterations. Moreover our acceleration of the known subdivision root-finders is dramatic in the case of sparse input polynomials. Our techniques can be of some independent interest for the design and analysis of polynomial root-finders.Comment: 89 pages, 5 figures, 2 table

    Computing low-degree factors of lacunary polynomials: a Newton-Puiseux approach

    Full text link
    We present a new algorithm for the computation of the irreducible factors of degree at most dd, with multiplicity, of multivariate lacunary polynomials over fields of characteristic zero. The algorithm reduces this computation to the computation of irreducible factors of degree at most dd of univariate lacunary polynomials and to the factorization of low-degree multivariate polynomials. The reduction runs in time polynomial in the size of the input polynomial and in dd. As a result, we obtain a new polynomial-time algorithm for the computation of low-degree factors, with multiplicity, of multivariate lacunary polynomials over number fields, but our method also gives partial results for other fields, such as the fields of pp-adic numbers or for absolute or approximate factorization for instance. The core of our reduction uses the Newton polygon of the input polynomial, and its validity is based on the Newton-Puiseux expansion of roots of bivariate polynomials. In particular, we bound the valuation of f(X,Ο•)f(X,\phi) where ff is a lacunary polynomial and Ο•\phi a Puiseux series whose vanishing polynomial has low degree.Comment: 22 page
    • …
    corecore